广东省中山市名校2025届数学九年级第一学期开学学业质量监测模拟试题【含答案】
展开
这是一份广东省中山市名校2025届数学九年级第一学期开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在四边形中,,再补充一个条件使得四边形为菱形,这个条件可以是( )
A.B.
C.D.与互相平分
2、(4分)甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2s,方差如下表:
则这四人中发挥最稳定的是( )
A.甲B.乙C.丙D.丁
3、(4分)若实数m、n满足 ,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是 ( )
A.12B.10C.8或10D.6
4、(4分)如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为( )
A.55°B.60°C.65°D.70°
5、(4分)某区“引进人才”招聘考试分笔试和面试.其中笔试按60%、面试按40%计算加权平均数作为总成绩.吴老师笔试成绩为90分.面试成绩为85分,那么吴老师的总成绩为( )分.
A.85B.86C.87D.88
6、(4分)一元二次方程的一次项系数为( )
A.1B.C.2D.-2
7、(4分)已知两个直角三角形全等,其中一个直角三角形的面积为4,斜边为3,则另一个直角三角形斜边上的高为( )
A.B.C.D.5
8、(4分)如图,在矩形ABCD中,E,F,G,H分别为边AB,DA,CD,BC的中点.若AB=2,AD=4,则图中阴影部分的面积为( )
A.3B.4C.6D.8
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,B、E、F、D四点在同一条直线上,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为_____cm.
10、(4分)正方形按如图所示的方式放置,点.和. 分别在直线和x轴上,已知点,则Bn的坐标是____________
11、(4分)如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快___s后,四边形ABPQ成为矩形.
12、(4分)已知矩形的长a=,宽b=,则这个矩形的面积是_____.
13、(4分)与最简二次根式是同类二次根式,则a=__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某校为了解初中学生每天在校体育活动的时间(单位:h),随机调査了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(Ⅰ)本次接受调查的初中学生人数为___________,图①中m的值为_____________;
(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;
(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.
15、(8分)如图,点D,C在BF上,AC∥DE,∠A=∠E,BD=CF.
(1)求证:AB=EF;
(2)连接AF,BE,猜想四边形ABEF的形状,并说明理由.
16、(8分)如图,正方形ABCD的顶点坐标分别为A(1,2),B(1,-2),C(5,-2),D(5,2),将正方形ABCD向左平移5个单位,作出它的图像,并写出图像的顶点坐标.
17、(10分)如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.
(1)求证△ACD≌△BFD
(2)求证:BF=2AE;
(3)若CD=,求AD的长.
18、(10分)甲、乙两人在笔直的道路上相向而行,甲骑自行车从地到地,乙驾车从地到地,假设他们分别以不同的速度匀速行驶,甲先出6分钟后,乙才出发,乙的速度为千米/分,在整个过程中,甲、乙两人之间的距离(千米)与甲出发的时间(分)之间的部分函数图象如图.
(1)两地相距______千米,甲的速度为______千米/分;
(2)直接写出点的坐标______,求线段所表示的与之间的函数表达式;
(3)当乙到达终点时,甲还需______分钟到达终点.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)直线 y=2x+3 与 x 轴相交于点 A,则点 A 的坐标为_____.
20、(4分)甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为________.(填“>”或“
【解析】
观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;波动越小越稳定.
【详解】
解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;
则乙地的日平均气温的方差小,
故S2甲>S2乙.
故答案为:>.
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
21、a<﹣1
【解析】
根据不等式两边同时除以一个正数不等号方向不变,同时除以一个负数不等号方向改变即可解本题.
【详解】
解:∵不等式(a+1)x>a+1的解集为x<1,
∴a+1<0,
∴a<﹣1,
故答案为:a<﹣1.
本题考查了不等式的基本性质,熟练掌握不等式两边同时除以一个负数不等号方向改变是解决本题的关键.
22、
【解析】
由题意得(a-b)2="6," 则=
23、-2
【解析】
利用平方差公式进行展开计算即可得.
【详解】
=
=-2,
故答案为:-2.
本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(1)的长为
【解析】
(1)根据位似图形的性质直接得出位似中心即可;
(1)利用位似比得出对应边的比进而得出答案.
【详解】
解:(1)如图所示:连接BB′、CC′,它们的交点即为位似中心O;
(1)∵△ABC与△A′B′C′是位似图形,且位似比是1:1,
AB=1cm,
∴A′B′的长为4 cm.
此题主要考查了位似图形的性质,利用位似比等于对应边的比得出是解题关键.
25、(1)8(环),8(环);(2)2.8,0.8;(3)选择甲,因为成绩呈上升趋势;选择乙,因为成绩稳定.
【解析】
(1)由折线统计图得出甲、乙两人的具体成绩,利用平均数公式计算可得;
(2)根据方差计算公式计算可得;
(3)答案不唯一,可从方差的意义解答或从成绩上升趋势解答均可.
【详解】
(1)=×(6+6+9+9+10)=8(环),
=×(9+7+8+7+9)=8(环);
(2)=×[(6﹣8)2×2+(9﹣8)2×2+(10﹣8)2]=2.8,
=×[(9﹣8)2×2+(7﹣8)2×2+(8﹣8)2]=0.8;
(3)选择甲,因为成绩呈上升趋势;
选择乙,因为成绩稳定.
本题主要考查折线统计图与方差,解题的关键是根据折线统计图得出解题所需数据及平均数、方差的计算公式.
26、(I)50,1;(Ⅱ)3.7,4,4(Ⅲ)120人
【解析】
(I)把条形图中的各组人数相加即可求得参加跳绳测试的学生人数,利用百分比的意义求得m即可;
(Ⅱ)利用加权平均数公式求得平均数,然后利用众数、中位数定义求解;
(Ⅲ)利用总人数乘以对应的百分比即可求解.
【详解】
解:(Ⅰ)本次参加跳绳的学生人数是1+5+25+1=50(人),
m=10×=1.
故答案是:50,1;
(Ⅱ)平均数是:(1×2+5×3+25×4+1×5)=3.7(分),
∵在这组数据中,4出现了25次,出现次数最多;
∴这组样本数据的众数是:4;
∵将这组样本数据自小到大的顺序排列,其中处于最中间位置的两个数都是4,有
∴这组样本数据的中位数是:4;
(Ⅲ)∵在50名学生中跳绳测试得3分的学生人数比例为1%,
∴估计该校该校九年级跳绳测试中得3分的学生有1200×1%=120(人).
答:该校九年级跳绳测试中得3分的学生有120人.
本题考查的是条形统计图的综合运用,还考查了加权平均数、中位数和众数以及用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
题号
一
二
三
四
五
总分
得分
批阅人
选手
甲
乙
丙
丁
方差(s2)
0.020
0.019
0.021
0.022
相关试卷
这是一份广东省汕头市濠江区2024年九年级数学第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省黄山市名校2025届九年级数学第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届广东省东莞市五校数学九年级第一学期开学学业质量监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。