2025届广东省东莞市五校数学九年级第一学期开学学业质量监测模拟试题【含答案】
展开
这是一份2025届广东省东莞市五校数学九年级第一学期开学学业质量监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在△ABC 中,∠BAC=90°,∠ABC=2∠C,BE 平分∠ABC 交 AC 于 E,AD⊥BE 于 D,下列结论:①AC﹣BE=AE;②点 E 在线段 BC 的垂直平分线上;③∠DAE=∠C;④BC=4AD,其中正确的个数有( )
A.1 个B.2 个C.3 个D.4 个
2、(4分)已知点的坐标为,则点在第( )象限
A.一B.二C.三D.四
3、(4分)在平面直角坐标系内,已知点A的坐标为(-6,0),直线l:y=kx+b不经过第四象限,且与x轴的夹角为30°,点P为直线l上的一个动点,若点P到点A的最短距离是2,则b的值为( )
A. 或B.C.2D.2或10
4、(4分)如图,□ABCD中,E为BC边上一点,且AE交DC延长线于F,连接BF,下列关于面积的结论中错误的是( )
A.S△ABF =S△ADEB.S△ABF =S△ADF
C.S△ABF=S□ABCDD.S△ADE=S□ABCD
5、(4分)如图,平行四边形ABCD的对角线AC、BD相交于点O,已知AD=5,BD=8,AC=6,则△OBC的面积为( )
A.5B.6C.8D.12
6、(4分)已知点P(m﹣3,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是( )
A.B.
C.D.
7、(4分)如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省( )元
A.3B.4C.5D.6
8、(4分)如图,小明同学用自制的直角三角形纸板测量树的高度,他调整自己的位置,设法使斜边保持水平,并且边与点在同一直线上.已知纸板的两条直角边,,测得边离地面的高度,,则树高是( )
A.4米B.4.5米C.5米D.5.5米
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在中,,,点分别是边的中点,则的周长是__________.
10、(4分)某校女子排球队的15名队员中有4个人是13岁,7个人是14岁,4个人是15岁,则该校女好排球队队员的平均年龄是____岁.
11、(4分)如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有1+4=5个正方形;第三幅图中有1+4+9=14个正方形;…按这样的规律下去,第4幅图中有_____个正方形.
12、(4分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC,AD=3,DF=1,四边形DBEC面积是_____
13、(4分)二次根式中,x的取值范围是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知在四边形中,于,于,,,求证:四边形是平行四边形.
15、(8分)(1)如图(1),已知:正方形ABCD的对角线交于点O,E是AC上的一动点,过点A作AG⊥BE于G,交BD于F.求证:OE=OF.
(2)在(1)的条件下,若E点在AC的延长线上,以上结论是否成立,为什么?
16、(8分)计算下列各题
(1)
(2)
17、(10分)如图,在四边形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,点P从点A出发,以每秒2cm的速度沿线段AB向点B方向运动,点Q从点D出发,以每秒3cm的速度沿线段DC向点C运动,已知动点P、Q同时出发,点P到达B点或点Q到达C点时,P、Q运动停止,设运动时间为t (秒).
(1)求CD的长;
(2)当四边形PBQD为平行四边形时,求t的值;
(3)在点P、点Q的运动过程中,是否存在某一时刻,使得PQ⊥AB?若存在,请求出t的值并说明理由;若不存在,请说明理
18、(10分)如图,点是边长为的正方形对角线上一个动点(与不重合),以为圆心,长为半径画圆弧,交线段于点,联结,与交于点.设的长为,的面积为.
(1)判断的形状,并说明理由;
(2)求与之间的函数关系式,并写出定义域;
(3)当四边形是梯形时,求出的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知等边△ABC的边长为10,P是△ABC内一点,PD平行AC,PE平行AD,PF平行BC,点D,E,F分别在AB,BC,AC上,则PD+PE+PF= _______________.
20、(4分)如图,已知四边形ABCD是平行四边形,将边AD绕点D逆时针旋转60°得到DE,线段DE交边BC于点F,连接BE.若∠C+∠E=150°,BE=2,CD=2,则线段BC的长为_____.
21、(4分)如图,菱形ABCD的周长为16,∠ABC=120°,则AC的长为_______________.
22、(4分)如图,菱形ABCD的边长为8, ,点E、F分别为AO、AB的中点,则EF的长度为________.
23、(4分)若以二元一次方程的解为坐标的点(x,y) 都在直线上,则常数b=_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)某校开展“爱我汕头,创文同行”的活动,倡议学生利用双休日参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:
(1)抽查的学生劳动时间为1.5小时”的人数为 人,并将条形统计图补充完整.
(2)抽查的学生劳动时间的众数为 小时,中位数为 小时.
(3)已知全校学生人数为1200人,请你估算该校学生参加义务劳动1小时的有多少人?
25、(10分)如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE
(1)求∠DCE的度数;
(2)若AB=4,CD=3AD,求DE的长.
26、(12分)已知:关于x的方程有两个不相等的实数根.
(1)求m的取值范围;
(2)若m为正整数,且该方程的根都是整数,求m的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
①∵BE平分∠ABC,
∴∠CBE=∠ABC,
∵∠ABC=2∠C,
∴∠EBC=∠C,
∴BE=CE,
∴AC-BE=AC-CE=AE;(①正确)
②∵BE=CE,
∴点E在线段BC的垂直平分线上;(②正确)
③∵∠BAC=90°,∠ABC=2∠C,
∴∠ABC=60°,∠C=30°,
∵BE=CE,
∴∠EBC=∠C=30°,
∴∠BEA=∠EBC+∠C=60°,
又∵∠BAC=90°,AD⊥BE,
∴∠DAE=∠ABE=30°,
∴∠DAE=∠C;(③正确)
④∠ABE=30°,AD⊥BE,
∴AB=2AD,
∵∠BAC=90°,∠C=30°,
∴BC=2AB,
∴BC=4AD.(④正确)
综上,正确的结论有4个,故选D.
点睛:此题考查了等腰三角形的性质与判定、线段垂直平分线的性质以及30°角直角三角形的性质.此题难度适中,注意数形结合思想的应用.
2、B
【解析】
应先判断出所求的点的横纵坐标的符号,进而判断其所在的象限.
【详解】
解:∵点的坐标为
∴点在第二象限
故选:B
本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点.牢记四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
3、A
【解析】
直线l:y=kx+b不经过第四象限,可能过一、二、三象限,与x轴的夹角为30°,又点A的坐标为(-6,0),因此两种情况,分别画出每种情况的图形,结合图形,利用已学知识进行解答.
【详解】
解:如图:分两种情况:
(1)在Rt△ABP1中,AP1=2,∠ABP1=30°,
∴AB=2AP1=4,
∴OB=OA-AB=6-4=2,
在Rt△BCO中,∠CBO=30°,∴OC=tan30°×OB=,即:b=;
(2)同理可求得AD=4,OD=OA+AD=10,
在Rt△DOE中,∠EDO=30°,∴OE=tan30°×OD=,即:b=;
故选:A.
考查一次函数的图象和性质、直角三角形的边角关系等知识,分类讨论得出答案,注意分类的原则既不重复,又不能遗漏,可根据具体问题合理灵活地进行分类.
4、B
【解析】
根据△ABF与△ABC等底同高,△ADE与△ADC等底同高,结合平行四边形的性质可得S△ABF=S△ABC=S▱ABCD,S△ADE=S△ADC=S▱ABCD,问题得解.
【详解】
解:∵AB∥CD,AD∥BC,
∴△ABF与△ABC等底同高,△ADE与△ADC等底同高
∴S△ABF=S△ABC=S▱ABCD,S△ADE=S△ADC=S▱ABCD,
∴S△ABF =S△ADE,
∴A,C,D正确;
∵S△ADF=S△ADE+S△DEF,S△ABF=S△ADE,
∴S△ADF>S△ABF,
∴B不正确;
故选B.
本题考查了平行四边形的性质、三角形面积的计算等知识,熟练掌握同底等高的三角形面积相等是解决问题的关键.
5、B
【解析】
由平行四边形的性质得出BC=AD=5,OA=OC=AC=3, OB=OD= BD=4,再由勾股定理逆定理证得△OBC是直角三角形,继而由直角三角形面积公式即可求出ΔOBC的面积.
【详解】
解:∵四边形ABCD是平行四边形,AD=5,BD=8,AC=6,
∴BC=AD=5,OA=OC=AC=3, OB=OD= BD=4,
∵
∴△OBC是直角三角形,
∴ .
故选:B.
本题主要考查了平行四边形的性质和勾股定理逆定理,平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分,解题的关键是证明△OBC是直角三角形.
6、D
【解析】
先根据题意列出不等式组,求出其中各不等式的解集,再求出这些解集的公共部分即可.
【详解】
解:∵点P(m﹣3,m﹣1)在第二象限,
∴,
解得:1<m<3,
故选:D.
本题考查不等式组的解法,在数轴上表示不等式组的解集等知识,解题的关键是熟练掌握不等式组的解法,属于中考常考题型.
7、B
【解析】
根据OA段可求出每千克苹果的金额,再由函数图像可得一次购买3千克这种苹果的金额,故可比较.
【详解】
根据OA段可得每千克苹果的金额为20÷2=10(元)
故分三次每次购买1千克这种苹果的金额为3×10=30(元)
由函数图像可得一次购买3千克这种苹果的金额26(元)
故节省30-26=4(元)
故选B.
此题主要考查函数图像的应用,解题的关键是根据题意求出每千克苹果的金额数.
8、D
【解析】
利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明的身高即可求得树高AB.
【详解】
解:∵∠DEF=∠BCD-90° ∠D=∠D
∴△ADEF∽△DCB
∴
∴DE=40cm=0.4m,EF-20cm=0.2m,AC-1.5m,CD=8m
∴解得:BC=4
∴AB=AC+BC=1.5+4=5.5米
故答案为:5.5.
本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型。
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
首先利用勾股定理求得斜边长,然后利用三角形中位线定理求得答案即可.
【详解】
解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,
∴AB===5,
∵点D、E、F分别是边AB、AC、BC的中点,
∴DE=BC,DF=AC,EF=AB,
∴C△DEF=DE+DF+EF=BC +AC +AB = (BC+AC+AB)=(4+3+5)=6.
故答案为:6.
本题考查了勾股定理和三角形中位线定理.
10、14
【解析】
根据甲权平均数公式求解即可.
【详解】
(4×13+7×14+4×15)÷15=14岁.
故答案为:14.
本题重点考查了加权平均数的计算公式,希望同学们要牢记公式,并能够灵活运用.
数据x1、x2、……、xn的加权平均数:(其中w1、w2、……、wn分别为x1、x2、……、xn的权数).
11、1
【解析】
观察图形发现:第1幅图中有1个正方形,第2幅图中有1+4=5个正方形,第3幅图中有1+4+9=14个正方形,…由此得出第n幅图中有12+22+32+42+…+n2=n(n+1)(2n+1)个正方形从而得到答案.
【详解】
解:∵第1幅图中有1个正方形,
第2幅图中有1+4=5个正方形,
第3幅图中有1+4+9=14个正方形,
…
∴第n幅图中有12+22+32+42+…+n2=n(n+1)(2n+1),
∴第4幅图中有12+22+32+42=1个正方形.
故答案为1.
此题考查图形的变化规律,利用图形之间的联系,得出数字的运算规律解决问题.
12、4
【解析】
根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得出四边形DBEC是菱形,由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.
【详解】
∵CE∥DB,BE∥DC,
∴四边形DBEC为平行四边形.
又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,
∴CD=BD=AC,
∴平行四边形DBEC是菱形;
∵点D,F分别是AC,AB的中点,AD=3,DF=1,
∴DF是△ABC的中位线,AC=1AD=6,S△BCD=S△ABC,
∴BC=1DF=1.
又∵∠ABC=90°,
∴AB==.
∵平行四边形DBEC是菱形,
∴S四边形DBEC=1S△BCD=S△ABC=AB•BC=×4×1=4,
故答案为4.
考查了菱形的判定与性质,三角形中位线定理,直角三角形斜边上的中线以及勾股定理,熟练掌握相关的定理与性质即可解题.
13、
【解析】
根据二次根式有意义的条件进行求解即可得.
【详解】
根据题意,得
,
解得,,
故答案为:.
本题考查了二次根式有意义的条件,熟练掌握“式子叫二次根式、二次根式中的被开方数必须是非负数”是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
由SAS证得△ADE≌△CBF,得出AD=BC,∠ADE=∠CBF,证得AD∥BC,利用一组对边平行且相等的四边形是平行四边形判定四边形ABCD是平行四边形.
【详解】
证明:∵AE⊥BD于E,CF⊥BD于F,
∴∠AED=∠CFB=90°,
在△ADE和△CBF中,
∴△ADE≌△CBF(SAS),
∴AD=BC,∠ADE=∠CBF,
∴AD∥BC,
∴四边形ABCD是平行四边形.
15、(1)详见解析;(2)以上结论仍然成立.
【解析】
(1)利用正方形的性质得OA=OB,∠AOB=∠BOC=90°,则利用等角的余角相等得到∠GAE=∠OBE,则可根据”ASA“判断△AOF≌△BOE,从而得到OF=OE;
(2)同样方法证明△AOF≌△BOE,仍然得到OF=OE.
【详解】
解:(1)证明:∵四边形ABCD为正方形,
∴OA=OB,∠AOB=∠BOC=90°,
∵AG⊥BE于点G,
∴∠AGE=90°,
∴∠GAE=∠OBE,
在△AOF和△BOE中,,
∴△AOF≌△BOE(ASA),
∴OF=OE;
(2)解:以上结论仍然成立.理由如下:
同样可证明△AOF≌△BOE(ASA),所以OF=OE.
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质;两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.
16、 (1)1;(2) -12+4.
【解析】
(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可;
(2)利用完全平方公式和平方差公式展开,然后再进行合并即可.
【详解】
(1)原式=(4 -2)÷2
=2÷2
=1;
(2)原式=5-3-(12-4+2)
=2-14+4
=-12+4.
本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.
17、(1)1;(2)2;(3)不存在.理由见解析
【解析】
【分析】(1)作AM⊥CD于M,由勾股定理求AM,再得CD=DM+CM=DM+AB;
(2)由题意:BP=AB﹣AP=10﹣2t.DQ=3t,根据:当BP=DQ时,四边形PBQD是平行四边形,可得10﹣2t=3t,可求t;
(3)作AM⊥CD于M,连接PQ.假设存在,则AP=MQ=3t﹣6,即2t=3t﹣6,求出的t不符合题意,故不存在.
【详解】解(1)如图1,作AM⊥CD于M,
则由题意四边形ABCM是矩形,
在Rt△ADM中,
∵DM2=AD2﹣AM2,AD=10,AM=BC=8,
∴AM=
=6,
∴CD=DM+CM=DM+AB=6+10=1.
(2)当四边形PBQD是平行四边形时,点P在AB上,点Q在DC上,
如图2中,由题意:BP=AB﹣AP=10﹣2t.DQ=3t,
当BP=DQ时,四边形PBQD是平行四边形,
∴10﹣2t=3t,
∴t=2,
(3)不存在.理由如下:
如图3,作AM⊥CD于M,连接PQ.
由题意AP=2t.DQ=3t,
由(1)可知DM=6,∴MQ=3t﹣6,
若2t=3t﹣6, 解得t=6,
∵AB=10,
∴t≤=5,
而t=6>5,故t=6不符合题意,t不存在.
【点睛】本题考核知识点:动点,平行四边形,矩形. 解题关键点:此题是综合题,熟记性质和判定是关键.
18、(1)为等腰直角三角形,理由见解析;(2)y=;(3)
【解析】
(1)先证明,再证明四边形是矩形,再证明,可得,即可得为等腰直角三角形.
(2)由,,即可求得与之间的函数关系式.
(3)因为四边形是梯形时,得.求PF的长,需利用已知条件求AC,AP,CE的长,则即可得出答案.
【详解】
解:(1) 为等腰直角三角形,理由如下:
在正方形中,,
又,
由题意可得,,
过点作,与分别交于点,
在正方形中,
四边形是矩形,
在中,
又
为等腰直角三角形
(2)在中,,
在中,
为等腰直角三角形,
(3)在等腰直角三角形中,
,
当四边形是梯形时,只有可能,
此题考查全等三角形的判定与性质,函数表达式的求解,梯形的性质,解题关键在于综合运用考点,利用图形与函数的结合求解即可.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
延长EP、FP分别交AB、BC于G、H,则由PD∥AB,PE∥BC,PF∥AC,可得平行四边形PGBD和平行四边形EPHC,再根据平行四边形及等边三角形的性质得到PD=DH,PE=HC,PF=BD,故可求出PD+PE+PF的长.
【详解】
如图,延长EP、FP分别交AB、BC于G、H,
由PD∥AB,PE∥BC,PF∥AC,可得平行四边形PGBD和平行四边形EPHC,
∴PG=BD,PE=HC
又∵△ABC是等边三角形,
且PF∥AC,PD∥AB,可得△PFG,△PDH是等边三角形,
∴PF=PG=BD,PD=DH
∴PD+PE+PF=DH+GP+HC=DH+BD+HC=BC=1
故答案为:1.
此题主要考查平行四边形的判定与性质,解题的关键是熟知平行四边形的性质及等边三角形的判定与性质.
20、2
【解析】
过C作CM⊥DE于M,过E作EN⊥BC于N,根据平行四边形的性质得到BC∥AD,根据平行线的性质得到∠BFE=∠DFC=∠ADE,根据旋转的性质得到∠BFE=∠DFC=∠ADE=60°,推出∠DCM=∠EBN,根据相似三角形的性质得到CM=BN,DM=EN,得到FM=BN,设FM=BN=x,EN=y,则DM=y,CM=x,根据勾股定理即可得到结论.
【详解】
解:过C作CM⊥DE于M,过E作EN⊥BC于N,
∵四边形ABCD是平行四边形,
∴BC∥AD,
∴∠BFE=∠DFC=∠ADE,
∵将边AD绕点D逆时针旋转60°得到DE,
∴∠BFE=∠DFC=∠ADE=60°,
∴∠FCM=∠FBN=30°,
∵∠DCF+∠BEF=150°,
∴∠DCM+∠BEN=90°,
∵∠BEN+∠EBN=90°,
∴∠DCM=∠EBN,
∴△DCM∽△EBN,
∴==,
∴CM=BN,DM=EN,
在Rt△CMF中,CM=FM,
∴FM=BN,
设FM=BN=x,EN=y,则DM=y,CM=x,
∴CF=2x,EF=y,
∵BC=AD=DE,
∴y+x+y=2x+y+x,
∴x=y,
∵x2+y2=4,
∴y=,x=,
∴BC=2,
故答案为:2.
【点评】
本题考查了平行四边形的性质,相似三角形的判定和性质,勾股定理,旋转的性质,正确的作出辅助线是解题的关键.
21、
【解析】
设AC与BD交于点E,则∠ABE=60°,根据菱形的周长求出AB的长度,在RT△ABE中,求出AE,继而可得出AC的长.
【详解】
解:在菱形ABCD中,∠ABC=120°,
∴∠ABE=60°,AC⊥BD,
∵菱形ABCD的周长为16,
∴AB=4,
在RT△ABE中,AE=ABsin∠ABE=,
故可得AC=2AE=.
故答案为.
此题考查了菱形的性质,属于基础题,解答本题的关键是掌握菱形的基本性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
22、2
【解析】
先根据菱形的性质得出∠ABO=∠ABC=30°,由30°的直角三角形的性质得出OA=AB=4,再根据勾股定理求出OB,然后证明EF为△AOB的中位线,根据三角形中位线定理即可得出结果
【详解】
∵四边形ABCD是菱形,
∴AC⊥BD,∠ABO=∠ABC=30°,
∴OA=AB=4,
∴OB= ,
∵点E、F分别为AO、AB的中点,
∴EF为△AOB的中位线,
∴EF=OB=2.
故答案是:2 .
考查了矩形的性质、勾股定理、含30°角的直角三角形的性质以及三角形中位线定理;根据勾股定理求出OB和证明三角形中位线是解决问题的关键.
23、1.
【解析】
直线解析式乘以1后和方程联立解答即可.
【详解】
因为以二元一次方程x+1y-b=0的解为坐标的点(x,y)都在直线上,
直线解析式乘以1得1y=-x+1b-1,变形为:x+1y-1b+1=0
所以-b=-1b+1,
解得:b=1,
故答案为1.
此题考查一次函数与二元一次方程问题,关键是直线解析式乘以1后和方程联立解答.
二、解答题(本大题共3个小题,共30分)
24、(1)40,补图见解析;(2)1.5、1.5;(3)估算该校学生参加义务劳动1小时的有400人.
【解析】
(1)根据统计图,先求出总数,再算出劳动时间为1.5小时的人数;(2)根据中位数和众数的定义分析即可;(3)用样本估计总体.
【详解】
(1)40
(2)1.5,1.5
(3)1200×30%=400,
答:估算该校学生参加义务劳动1小时的有400人。
本题考核知识点:数据的描述. 解题关键点:理解统计的基本定义,从统计图获取信息.
25、解:(1)90°;(2)2
【解析】
试题分析:(1)首先由等腰直角三角形的性质求得∠BAD、∠BCD的度数,然后由旋转的性质可求得∠BCE的度数,故此可求得∠DCE的度数;
(2)由(1)可知△DCE是直角三角形,先由勾股定理求得AC的长,然后依据比例关系可得到CE和DC的长,最后依据勾股定理求解即可.
试题解析:(1)∵△ABCD为等腰直角三角形,
∴∠BAD=∠BCD=45°.
由旋转的性质可知∠BAD=∠BCE=45°.
∴∠DCE=∠BCE+∠BCA=45°+45°=90°.
(2)∵BA=BC,∠ABC=90°,
∴AC=.
∵CD=3AD,
∴AD=,DC=3.
由旋转的性质可知:AD=EC=.
∴DE=.
考点:旋转的性质.
26、(1);(2)m的值为1.
【解析】
(1)根据题意得出△>0,代入求出即可;
(2)求出m=1,2或1,代入后求出方程的解,即可得出答案.
【详解】
解:(1)∵关于x的方程有两个不相等的实数根,
∴△=.
∴;
(2)∵且m为正整数,
∴m可取1、2、1.
当m=1时,的根不是整数,不符合题意;
当m=2时,的根不是整数,不符合题意;
当m=1时,,根为,,符合题意.
∴m的值为1.
本题考查根的判别式和解一元二次方程,能根据题意求出m的值和m的范围是解题的关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2025届广东省东莞市粤华学校数学九年级第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广州越秀区五校联考九年级数学第一学期开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广东省东莞市中学堂六校数学九年级第一学期开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。