所属成套资源:新高考数学专题复习专题练习(学生版+解析)
新高考数学专题复习专题39数列中的探索性问题专题练习(学生版+解析)
展开
这是一份新高考数学专题复习专题39数列中的探索性问题专题练习(学生版+解析),共16页。试卷主要包含了题型选讲,数列中的参数的问题等内容,欢迎下载使用。
数列中的探究性问题实际上就是不定方程解的问题,对于此类问题的求解,通常有以下三种常用的方法:①利用等式两边的整数是奇数还是偶数的方法来加以判断是否存在;②利用寻找整数的因数的方法来进行求解,本题的解题思路就是来源于此;③通过求出变量的取值范围,从而对范围内的整数值进行试根的方法来加以求解.对于研究不定方程的解的问题,也可以运用反证法,反证法证明命题的基本步骤:
①反设:设要证明的结论的反面成立.作反设时要注意把结论的所有反面都要写出来,不要有遗漏.②归谬:从反设出发,通过正确的推理得出与已知条件或公理、定理矛盾的结论.③存真:否定反设,从而得出原命题结论成立.
一、题型选讲
题型一 、数列中项存在的问题
例1、(2020届山东省泰安市高三上期末)已知等差数列的前n项和为.
(1)求的通项公式;
(2)数列满足为数列的前n项和,是否存在正整数m,,使得?若存在,求出m,k的值;若不存在,请说明理由.
例2、(江苏省响水中学2020年秋学期高三年级第三次学情分析考试)在①,,成等比数列,且;②,且这两个条件中任选一个填入下面的横线上并解答.
已知数列是公差不为0的等差数列,,其前n项和为,数列的前n项和为,若 .注:如果选择多个条件分别解答,按第一个解答计分.
(1)求数列,的通项公式;
(2)求数列的前n项和.
(3)设等比数列的首项为2,公比为,其前项和为,若存在正整数,使得,求的值.
例3、(2018无锡期末)已知数列{an}满足eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,a1)))eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,a2)))·…·eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,an)))=eq \f(1,an),n∈N*,Sn是数列{an}的前n项和.
(1) 求数列{an}的通项公式;
(2) 若ap,30,Sq成等差数列,ap,18,Sq成等比数列,求正整数p,q的值;
(3) 是否存在k∈N*,使得eq \r(akak+1+16)为数列{an}中的项?若存在,求出所有满足条件的k的值;若不存在,请说明理由.
题型二、 数列中的等差数列或者等比数列的存在问题
例4、(河北省衡水中学2021届上学期高三年级二调考试)已知正项数列的前项和为,,,其中为常数.
(1)证明:
(2)是否存在实数,使得数列为等比数列?若存在,求出的值;若不存在,请说明理由.
例5、(2018扬州期末)已知各项都是正数的数列{an}的前n项和为Sn,且2Sn=aeq \\al(2,n)+an,数列{bn}满足b1=eq \f(1,2),2bn+1=bn+eq \f(bn,an).
(1) 求数列{an},{bn}的通项公式;
(2) 设数列{cn}满足cn=eq \f(bn+2,Sn),求和c1+c2+…+cn;
(3) 是否存在正整数p,q,r(pMn-1,所以an=Mn>Mn-1≥an-1,即对n≥2,n∈N*,都有an>an-1,
所以Mn=an,mn=a1,bn-bn-1=eq \f(Mn+mn,2)-eq \f(Mn-1+mn-1,2)=eq \f(an+a1,2)-eq \f(an-1+a1,2)=eq \f(an-an-1,2)=d′,
所以an-an-1=2d′,即{an}为等差数列.(7分)
②若d′
相关试卷
这是一份新高考数学专题复习专题49数列(多选题部分)专题练习(学生版+解析),共12页。试卷主要包含了题型选讲,数列的综合性问题等内容,欢迎下载使用。
这是一份新高考数学专题复习专题38数列中的通项公式专题练习(学生版+解析),共15页。试卷主要包含了题型选讲,由的递推关系求通项公式,新定义题型中通项公式的求法等内容,欢迎下载使用。
这是一份新高考数学专题复习专题37数列求和中的不等式问题专题练习(学生版+解析),共14页。试卷主要包含了题型选讲,数列中与不等式有关的参数问题等内容,欢迎下载使用。