广东省深圳外国语学校2024-2025学年数学九上开学教学质量检测模拟试题【含答案】
展开
这是一份广东省深圳外国语学校2024-2025学年数学九上开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列说法正确的是( )
A.是二项方程B.是二元二次方程
C.是分式方程D.是无理方程
2、(4分)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=6,DE=3,则△BCE的面积等于( )
A.10B.9C.8D.6
3、(4分)一组数据4,5,7,7,8,6的中位数和众数分别是( )
A.7,7B.7,6.5C.6.5,7D.5.5,7
4、(4分)在平面直角坐标系中,点(-1,2)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
5、(4分)根据以下程序,当输入x=﹣2时,输出结果为( )
A.﹣5B.﹣2C.0D.3
6、(4分)如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是( )
A.1B.C.2D.
7、(4分)若一个多边形的每个内角都相等,且都为160度,则这个多边形的内角和是( )度
A.2520B.2880C.3060D.3240
8、(4分)用反证法证明“若 a⊥c,b⊥c,则 a∥b”时,应假设( )
A.a 不垂直于 cB.a垂直于bC.a、b 都不垂直于 cD.a 与 b 相交
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)计算或化简
(1) (2)
10、(4分)某公司招聘考试分笔试和面试两项,其中笔试按,面试按计算加权平均数作为总成绩.马丁笔试成绩85分,面试成绩90分,那么马丁的总成绩是______分.
11、(4分)小邢到单位附近的加油站加油,下图所示是他所用的加油机上的数据显示牌,则数据中的变量是______
12、(4分)若1<x<2,则|x﹣3|+的值为_____.
13、(4分)外角和与内角和相等的平面多边形是_______________.
三、解答题(本大题共5个小题,共48分)
14、(12分)八年级380名师生参加户外拓展活动,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表
(1)设租用乙种客车x辆,租车总费用为y元求出y(元)与x(辆)之间的函数表达式;
(2)当乙种客车租用多少辆时,能保障所有的师生能参加户外拓展活动且租车费用最少,最少费用是多少元?
15、(8分)在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,交∠CBE的平分线于点N.
(1)写出点C的坐标;
(2)求证:MD=MN;
(3)连接DN交BC于点F,连接FM,下列两个结论:①FM的长度不变;②MN平分∠FMB,其中只有一个结论是正确的,请你指出正确的结论,并给出证明
16、(8分)小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16分钟回到家中.设小明出发第t分钟的速度为v米/分,离家的距离为s米.v与t之间的部分图象、s与t之间的部分图象分别如图1与图2(图象没画完整,其中图中的空心圈表示不包含这一点),则当小明离家600米时,所用的时间是( )分钟.
A.4.5B.8.25C.4.5 或8.25D.4.5 或 8.5
17、(10分)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.
18、(10分)如图1,正方形ABCD的边长为4,对角线AC、BD交于点M.
(1)直接写出AM= ;
(2)P是射线AM上的一点,Q是AP的中点,设PQ=x.
①AP= ,AQ= ;
②以PQ为对角线作正方形,设所作正方形与△ABD公共部分的面积为S,用含x的代数式表示S,并写出相应的x的取值范围.(直接写出,不需要写过程)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在平面直角坐标系xOy中,第三象限内有一点A,点A的横坐标为﹣2,过A分别作x轴、y轴的垂线,垂足为M、N,矩形OMAN的面积为6,则直线MN的解析式为_____.
20、(4分)直线y=kx+3经过点(2,-3),则该直线的函数关系式是____________
21、(4分)若m2﹣n2=6,且m﹣n=2,则m+n=_________
22、(4分)将正比例函数y=﹣2x的图象沿y轴向上平移5个单位,则平移后所得图象的解析式是_____.
23、(4分)若多项式,则=_______________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,⊿是直角三角形,且,四边形是平行四边形,为的中点,平分,点在上,且.
求证:
25、(10分)如图,在矩形中,为边上一点,连接,过点作,垂足为,若,.
(1)求证:;
(2)求的长(结果用根式表示).
26、(12分)为了调查甲,乙两台包装机分装标准质量为奶粉的情况,质检员进行了抽样调查,过程如下.请补全表一、表二中的空,并回答提出的问题.
收集数据:
从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:)如下:
甲:394,400,408,406,410,409,400,400,393,395
乙:402,404,396,403,402,405,397,399,402,398
整理数据:
表一
分析数据:
表二
得出结论:
包装机分装情况比较好的是______(填甲或乙),说明你的理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据整式方程、分式方程和无理方程的概念逐一判断即可得.
【详解】
A.方程是一般式,且方程的左边只有2项,此方程是二项方程,此选项正确;
B.x2y−y=2是二元三次方程,此选项错误;
C.是一元一次方程,属于整式方程,此选项错误;
D.是一元二次方程,属于整式方程;
故选A.
本题主要考查无理方程,解题的关键是掌握整式方程、分式方程和无理方程的定义.
2、B
【解析】
作EF⊥BC于F,根据角平分线的性质可知EF=DE=3,即可求出△BCE的面积.
【详解】
作EF⊥BC于F,
∵BE平分∠ABC,ED⊥AB,EF⊥BC,
∴EF=DE=3,
∴△BCE的面积=×BC×EF=9,
故选B.
本题考查了角平分线的性质,熟练掌握角平分线的性质:角平分线上的点到角两边的距离相等是解答本题的关键.
3、C
【解析】
根据中位数与众数的概念和求解方法进行求解即可.
【详解】
将数据从小到大排列:4、5、6、7、7、8,
所以中位数为=6.5,众数是7,
故选C.
本题考查了中位数和众数,熟练掌握相关定义以及求解方法是解题的关键.①给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.②给定一组数据,出现次数最多的那个数,称为这组数据的众数.
4、B
【解析】
根据各象限内点的坐标特征解答即可.
【详解】
∵点(-1,2)的横坐标为负数,纵坐标为正数,
∴点(-1,2)在第二象限.
故选B.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
5、B
【解析】
根据所给的程序,用所给数的平方减去3,再把所得的结果和1比较大小,判断出需不需要继续计算即可.
【详解】
解:当x=﹣1时,
(﹣1)1﹣3=1;
当x=1时,
11﹣3=﹣1;
∵﹣1<1,
∴当输入x=﹣1时,输出结果为﹣1.
故选:B.
本题考查了程序式的基本算法及代数式的的计算,读懂题中的算法是解题的关键.
6、C
【解析】
试题分析:∵菱形ABCD的边长为1,
∴AD=AB=1,
又∵∠DAB=60°,
∴△DAB是等边三角形,
∴AD=BD=AB=1,
则对角线BD的长是1.
故选C.
考点:菱形的性质.
7、B
【解析】
n边形的内角和是(n-2)180°,由此列方程求解.
【详解】
设这个多边形的边数为n,
则(n-2)180°=160°n,
解得,n=18.
则(n-2)180°=(18-2)×180°=2880°.
故选B.
本题主要考查了多边形的内角和,n边形的内角和是(n-2)180°.
8、D
【解析】
反证法的步骤中,第一步是假设结论不成立,反面成立,即可解答.
【详解】
解:用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”,
应假设:a不平行b或a与b相交.
故选择:D.
本题考查了反证法,解此题关键要懂得反证法的意义及步骤.
反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(1);
【解析】
(1)根据根式的计算法则计算即可.
(2)采用平方差公式计算即可.
【详解】
(1)原式
(2)原式
本题主要考查根式的计算,这是必考题,应当熟练掌握.
10、1
【解析】
根据笔试和面试所占的权重以及笔试成绩和面试成绩,列出算式,进行计算即可.
【详解】
小明的总成绩为85×60%+90×40%=1(分).
故答案为:1.
本题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.
11、金额与数量
【解析】
根据常量与变量的意义结合油的单价是不变的,而金额随着加油数量的变化在变化,据此即可得答案.
【详解】
常量是固定不变的量,变量是变化的量,
单价是不变的量,而金额是随着数量的变化而变化,
故答案为:金额与数量.
本题考查了常量与变量,熟练掌握常量与变量的概念是解题的关键.
12、1
【解析】
先根据1<x<1得出x﹣3<0,x﹣1>0,再去绝对值符号并把二次根式进行化简,合并同类项即可.
【详解】
解:∵1<x<1,
∴x﹣3<0,x﹣1>0,
∴原式=3﹣x+x﹣1=1.
故答案为1.
本题考查的是二次根式的性质与化简,熟知二次根式具有非负性是解答此题的关键.
13、四边形
【解析】
设此多边形是n边形,根据多边形内角与外角和定理建立方程求解.
【详解】
设此多边形是n边形,由题意得:
解得
故答案为:四边形.
本题考查多边形内角和与外角和,熟记n边形的内角和公式,外角和都是360°是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)y=-100x+3850;(2)当乙为2辆时,能保障费用最少,最少费用为3650元.
【解析】
(1)y=租甲种车的费用+租乙种车的费用,由题意代入相关数据即可得;
(2)根据题意确定出x的取值范围,再根据一次函数的增减性即可得.
【详解】
(1)由题意,得
y=550(7-x)+450x,
化简,得y=-100x+3850,
即y(元)与x(辆)之间的函数表达式是y=-100x+3850;
(2)由题意,得45x+60(7﹣x)≥380,解得,x≤(x为自然数),
∵y=-100x+3850中k=-100
相关试卷
这是一份广东省深圳市龙华实验学校2024-2025学年数学九上开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省深圳市百合外国语学校2025届数学九上开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广东省深圳外国语学校九年级数学第一学期开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。