![广东省东莞市石碣丽江学校2024年九上数学开学预测试题【含答案】第1页](http://m.enxinlong.com/img-preview/2/3/16264166/0-1729211102325/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省东莞市石碣丽江学校2024年九上数学开学预测试题【含答案】第2页](http://m.enxinlong.com/img-preview/2/3/16264166/0-1729211102396/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省东莞市石碣丽江学校2024年九上数学开学预测试题【含答案】第3页](http://m.enxinlong.com/img-preview/2/3/16264166/0-1729211102419/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
广东省东莞市石碣丽江学校2024年九上数学开学预测试题【含答案】
展开
这是一份广东省东莞市石碣丽江学校2024年九上数学开学预测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)点在直线上,则点不可能在( )
A.第一象限B.第二象限C.第三象限D.第四象限
2、(4分)为了解学生的体能情况,抽取某学校同年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频数分布直方图.已知图中从左到右前三个小组的频率分别为0.1,0.3,0.4,第一小组的频数为5,则第四小组的频数为( )
A.5
B.10
C.15
D.20
3、(4分)在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是( )
A.平均数B.众数C.方差D.标准差
4、(4分)在平面直角坐标系中,点的位置所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
5、(4分)在Rt△ABC中,∠C=90°,D为BC上一点,要使点D到AB的距离等于DC,则必须满足( )
A.点D是BC的中点
B.点D在∠BAC的平分线上
C.AD是△ABC的一条中线
D.点D在线段BC的垂直平分线上
6、(4分)下列说法正确的是( )
A.某种彩票的中奖机会是1%,则买100张这种彩票一定会中奖.
B.为了解全国中学生的睡眠情况,应该采用普查的方式.
C.若甲数据的方差s 甲 2 =0.01,乙数据的方差s 乙 2 =0.1,则乙数据比甲数据稳定.
D.一组数据3,1,4,1,1,6,10的众数和中位数都是1.
7、(4分)在平而直角坐标系中,已知平行四边形ABCD的三个顶点坐标分别是A(m,n),B(2,-1),C(-m,-n),则关于点D的说法正确的是( )
甲:点D在第一象限
乙:点D与点A关于原点对称
丙:点D的坐标是(-2,1)
丁:点D与原点距离是.
A.甲乙B.乙丙C.甲丁D.丙丁
8、(4分)若a+c=b,那么方程ax2+bx+c=0(a≠0)必有一根是( )
A.1 B.﹣1 C.±1 D.0
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,正方形ABCD的边长为4,E为BC上的点,BE=1,F为AB的中点,P为AC上一个动点,则PF+PE的最小值为_____.
10、(4分)分式的值为0,那么x的值为_____.
11、(4分)既是轴对称图形,又是中心对称图形的四边形是______.
12、(4分)使得二次根式有意义的x的取值范围是 .
13、(4分)如图,在平行四边形ABCD中,AB=,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为________.
三、解答题(本大题共5个小题,共48分)
14、(12分).某酒厂生产A,B两种品牌的酒,平均每天两种酒共可售出600瓶,每种酒每瓶的成本和售价如表所示,设平均每天共获利y元,平均每天售出A种品牌的酒x瓶.
(1)请写出y关于x的函数关系式;
(2)如果该厂每天至少投入成本25000元,且售出的B种品牌的酒不少于全天销售总量的55%,那么共有几种销售方案?并求出每天至少获利多少元?
15、(8分)如图,在平面直角坐标系内,小正方形网格的边长为1个单位长度,的三个顶点的坐标分别为,,.
(1)画出将向上平移2个单位长度,再向左平移5个单位长度后得到的;
(2)画出将绕点按顺时针方向旋转90°得到的;
(3)在轴上存在一点,满足点到点与点的距离之和最小,请直接写出点的坐标.
16、(8分)如图,在平行四边形ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD,EC.
(1)求证:四边形BECD是平行四边形;
(2)当∠A=50°,∠BOD=100°时,判断四边形BECD的形状,并说明理由.
17、(10分)某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.
(1)求y与x之间的函数表达式,并写出x的取值范围;
(2)若该节能产品的日销售利润为W(元),求W与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?
(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元?
18、(10分) “雁门清高”苦荞茶,是大同左云的特产,享誉全国,某经销商计划购进甲、乙两种包装的苦荞茶500盒进行销售,这两种茶的进价、售价如下表所示:
设该经销离购进甲种包装的苦荞茶x盒,总进价为y元。
(1)求y与x的函数关系式
(2)为满足市场需求,乙种包装苦荞茶的数量不大于甲种包装数量的4倍,请你求出获利最大的进货方案,并求出最大利润。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,菱形ABCD中,对角线AC、BD相交于点O,且AC=24,BD=10,若点E是BC边的中点,则OE的长是_____.
20、(4分)如图,在△ABC中,∠BAC=60°,点D在BC上,AD=10,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF,则DE的长为______.
21、(4分)根据图中的程序,当输入x=2时,输出结果y=________.
22、(4分)若的三边长分别是6、8、10,则最长边上的中线长为______.
23、(4分)如图,点A在反比例函数的图像上,AB⊥x轴,垂足为B,且,则_____ .
二、解答题(本大题共3个小题,共30分)
24、(8分)某直销公司现有名推销员,月份每个人完成销售额(单位:万元),数据如下:
整理上面的数据得到如下统计表:
(1)统计表中的 ; ;
(2)销售额的平均数是 ;众数是 ;中位数是 .
(3)月起,公司为了提高推销员的积极性,将采取绩效工资制度:规定一个基本销售额,在基本销售额内,按抽成;从公司低成本与员工愿意接受两个层面考虑,你认为基本销售额定位多少万元?请说明理由.
25、(10分)如图,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE.求证:AF=BE.
26、(12分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).
(1)求抛物线的解析式;
(2)猜想△EDB的形状并加以证明.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
先判断直线y=3x-5所经过的象限,据此可得出答案.
【详解】
解:直线中,k=3>0,b=-5<0,经过第一、三、四象限,点A在该直线上,所以点A不可能在第二象限.
故选:B.
本题考查一次函数的图像,画出图像解题会更直观.
2、B
【解析】
根据频率= ,即可求得总数,进而即可求得第四小组的频数.
【详解】
解:总数是5÷0.1=50人;
则第四小组的频数是50×(1-0.1-0.3-0.4)=50×0.2=10,
故选B.
本题考查频率的计算公式,解题关键是熟记公式.
3、B
【解析】
分析:根据平均数的意义,众数的意义,方差的意义进行选择.
详解:由于14岁的人数是533人,影响该机构年龄特征,因此,最能够反映该机构年龄特征的统计量是众数.
故选B.
点睛:本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
4、B
【解析】
观察题目,根据象限的特点,判断出所求的点的横纵坐标的符号;接下来,根据题目的点的坐标,判断点所在的象限.
【详解】
∵点的横坐标是负数,纵坐标是正数,
∴在平面直角坐标系的第二象限,
故选:B.
本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
5、B
【解析】
根据角平分线的判定定理解答即可.
【详解】
如图所示,DE为点D到AB的距离.
∵DC=DE,∠C=90°,DE⊥AB,∴AD平分∠CAD,则点D在∠BAC的平分线上.
故选B.
本题考查了角平分线的判定,掌握到角的两边的距离相等的点在角的平分线上是解题的关键.
6、D
【解析】
A选项:某种彩票的中奖机会是1%,则买100张这种彩票中奖的可能性很大,但不是一定中奖,故本选项错误;
B选项:为了解全国中学生的睡眠情况,应该采用抽样调查的方式,故本选项错误;
C选项:方差反映了一组数据的波动情况,方差越小数据越稳定,故本选项错误;
D选项:一组数据3,1,4,1,1,6,10的众数和中位数都是1,故本选项正确;
故选D.
7、D
【解析】
根据A,C的坐标特点得到B,D也关于原点对称,故可求出D的坐标,即可判断.
【详解】
∵平行四边形ABCD中,A(m,n),C(-m,-n)关于原点对称,
∴B,D也关于原点对称,∵B(2,-1)
∴D(-2,1)
故点D在第四象限,点D与原点距离是
故丙丁正确,选D.
此题主要考查平行四边形的性质,解题的关键是熟知各点的坐标特点.
8、B
【解析】解:根据题意:当x=﹣1时,方程左边=a﹣b+c,而a+c=b,即a﹣b+c=0,所以当x=﹣1时,方程ax2+bx+c=0成立.故x=﹣1是方程的一个根.故选B.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
先根据正方形的性质和轴对称的性质找出使PF+PE取得最小值的点,然后根据勾股定理求解即可.
【详解】
∵正方形ABCD是轴对称图形,AC是一条对称轴,
∴点F关于AC的对称点在线段AD上,设为点G,连结EG与AC交于点P,则PF+PE的最小值为EG的长,
∵AB=4,AF=2,∴AG=AF=2,
∴EG=.
故答案为.
本题考查了正方形的性质,轴对称之最短路径问题及勾股定理,根据轴对称的性质确定出点P的位置是解答本题的关键.
10、2
【解析】
分式的值为1的条件是:(1)分子为1;(2)分母不为1.两个条件需同时具备,缺一不可.据此可以解答本题.
【详解】
解:由题意可得:x2﹣9=1且x+2≠1,
解得x=2.
故答案为:2.
此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:分母不为零这个条件不能少.
11、矩形(答案不唯一)
【解析】
根据轴对称图形与中心对称图形的概念,写一个即可.
【详解】
解:矩形既是轴对称图形,又是中心对称图形.
故答案为:矩形(答案不唯一).
本题考查了轴对称图形与中心对称图形的概念.
12、x≥﹣
【解析】
试题分析:根据被开方数大于等于0,可得2x+1≥0,解得x≥﹣.
考点:二次根式有意义的条件
13、3.
【解析】
试题分析:点B恰好与点C重合,且四边形ABCD是平行四边形,根据翻折的性质, 则AE⊥BC,BE=CE=3,在Rt△ABE中,由勾股定理得.故答案为3.
考点:3.翻折变换(折叠问题);3.勾股定理;3.平行四边形的性质.
三、解答题(本大题共5个小题,共48分)
14、(1)y;(2)共有4种方案,10335.
【解析】
(1)根据获利y=A种品牌的酒的获利+B种品牌的酒的获利,即可解答.
(2)根据生产B种品牌的酒不少于全天产量的55%,A种品牌的酒的成本+B种品牌的酒的成本≥25000,列出方程组,求出x的取值范围,根据x为正整数,即可得到生产方案;再根据一次函数的性质,即可求出每天至少获利多少元.
【详解】
(1)
(2)依题意2得
x为整数
解得
共有4种方案 A:267 B:333
A:268 B:332
A:269 B:331
A:270 B:330
至少获利
若x取267,y最小
本题考查了一次函数的应用,关键从表格种获得成本价和利润,然后根据利润这个等量关系列解析式,根据第二问中的利润和成本做为不等量关系列不等式组分别求出解,然后根据一次函数的性质求出哪种方案获利最小.
15、(1)答案见解析;(2)答案见解析;(3).
【解析】
(1)先分别将A、B、C三点向上平移2个单位长度,再向左平移5个单位长度得到,然后连接、、即可;
(2)根据题意,先将边OC和OA绕点顺时针方向旋转90°得到、,然后连接即可;
(3)连接交x轴于点P,根据两点之间线段最短即可得出此时点到点与点的距离之和最小,然后利用待定系数法求出直线的解析式,从而求出点P 的坐标.
【详解】
解:(1)先分别将A、B、C三点向上平移2个单位长度,再向左平移5个单位长度得到,然后连接、、,如图所示,即为所求;
(2)先将边OC和OA绕点顺时针方向旋转90°得到、,然后连接,如图所示,即为所求;
(3)连接交x轴于点P,根据两点之间线段最短,即可得出此时点到点与点的距离之和最小,
由平面直角坐标系可知:点A的坐标为(4,3),点的坐标为(3,-4)
设直线的解析式为y=kx+b
将A、的坐标代入,得
解得:
∴直线的解析式为y=7x-25
将y=0代入,得
∴点P的坐标为.
此题考查的是图形的平移、旋转、两点之间线段最短的应用和求一次函数的解析式,掌握图形的平移、旋转的画法、两点之间线段最短和利用待定系数法求一次函数的解析式是解决此题的关键.
16、 (1)证明见解析;(2)四边形BECD是矩形.
【解析】
(1)由AAS证明△BOE≌△COD,得出OE=OD,即可得出结论;
(2)结论:四边形BECD是矩形.由平行四边形的性质得出∠BCD=∠A=50°,由三角形的外角性质求出∠ODC=∠BCD,得出OC=OD,证出DE=BC,即可得出结论.
【详解】
(1)证明:∵四边形ABCD为平行四边形,
∴AB∥DC,AB=CD,
∴∠OEB=∠ODC,
又∵O为BC的中点,
∴BO=CO,
在△BOE和△COD中,
,
∴△BOE≌△COD(AAS);
∴OE=OD,
∴四边形BECD是平行四边形;
(2)解:若∠A=50°,∠BOD=100°时,四边形BECD是矩形.
理由如下:∵四边形ABCD是平行四边形,
∴∠BCD=∠A=50°,
∵∠BOD=∠BCD+∠ODC,
∴∠ODC=100°﹣50°=50°=∠BCD,
∴OC=OD,
∵BO=CO,OD=OE,
∴DE=BC,
∵四边形BECD是平行四边形,
∴四边形BECD是矩形;
此题主要考查了矩形的判定、平行四边形的判定与性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的判定与性质是解决问题的关键.
17、(1) ;(2)日销售利润不超过1040元的天数共有18天;(3)第5天的日销售利润最大,最大日销售利润是880元.
【解析】
(1)这是一个分段函数,利用待定系数法求y与x之间的函数表达式,并确定x的取值范围;
(2)根据利润=(售价-成本)×日销售量可得w与x之间的函数表达式,并分别根据分段函数计算日销售利润不超过1040元对应的x的值;
(3)分别根据5≤x≤10和10
相关试卷
这是一份2025届广东省东莞市东方明珠学校数学九上开学调研试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广东省东莞市石碣镇九上数学开学考试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广东省东莞市寮步镇信义学校数学九上开学预测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)