所属成套资源:【新教材新课标】湘教版数学八年级上册课件+教案+大单元整体教学设计
初中数学湘教版(2024)八年级上册3.1 平方根教学课件ppt
展开
这是一份初中数学湘教版(2024)八年级上册3.1 平方根教学课件ppt,文件包含312无理数pptx、312无理数docx、八上第三单元大单元设计doc等3份课件配套教学资源,其中PPT共17页, 欢迎下载使用。
1.理解无理数概念:经历无理数的探讨过程,概括出无理数的概念,并能准确区别有理数和无理数。2.掌握计算器求平方根:学会使用计算器求一个正数的算术平方根及其近似值,掌握计算方法,发展数感和估算能力。3.培养数学素养:通过动手操作和实例分析,感受无理数的存在,加深对无理数的理解,初步了解开方开不尽的数的无限不循环性,理解用近似值表示无限不循环小数的实际意义。
观察下列结果:2.8=7.84 2.9= 2.829=8.003241… …从上述数据, 你能猜出面积为 8 的正方形的边长是多少吗?边长应该比 2.828 大, 比 2.829 小.
常见无理数:①含π的数②开方开不尽的数③特定结构但不循环的数
1.如何了解无理数?如π=,可以通过四舍五入,取到小数点后面第二位、第三位、...,得到π≈3.14、π≈3.142、...,所以用一个有限小数来近似地表示一个无理数.2.这种数叫什么?对于π,称 3.14, 3.142 是 π 的精确到小数点后面第二位, 第三位的近似值, 3.142, 3.141 6, …都是 π 的近似值, 称它们为近似数.
【知识技能类作业】必做题:
【知识技能类作业】选做题:
1.无理数:既不是有限小数, 也不是无限循环小数, 这种小数叫作无限不循环小数. 我们把无限不循环小数叫作无理数.2.近似数用一个有限小数来近似地表示一个无理数.如3.14, 3.142, 3.141 6, …都是 π 的近似值, 称它们为近似数.
相关课件
这是一份数学八年级上册3.3 实数获奖教学课件ppt,文件包含332实数的运算pptx、332实数的运算docx、八上第三单元大单元设计doc等3份课件配套教学资源,其中PPT共21页, 欢迎下载使用。
这是一份初中数学湘教版(2024)八年级上册第3章 实数3.3 实数获奖教学ppt课件,文件包含331实数的分类及性质pptx、331实数的分类及性质docx、八上第三单元大单元设计doc等3份课件配套教学资源,其中PPT共18页, 欢迎下载使用。
这是一份初中数学湘教版(2024)八年级上册2.2 命题与证明教学ppt课件,文件包含223命题的证明pptx、八上第二单元大单元设计doc、223命题的证明docx等3份课件配套教学资源,其中PPT共26页, 欢迎下载使用。