2025届新疆昌吉州奇台县数学九上开学质量检测模拟试题【含答案】
展开
这是一份2025届新疆昌吉州奇台县数学九上开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知P1(1,y1),P2(2,y2)是正比例函数y=-2x图象上的两个点,则y1、y2 的大小关系是( )
A.y1<y2B.y1>y2C.y1=y2D.y1≥y2
2、(4分)如图,将△ABC绕点A顺时针旋转,使点C落在边AB上的点E处,点B落在点D处,连结BD,如果∠DAC=∠DBA,那么∠BAC度数是( )
A.32°B.35°C.36°D.40°
3、(4分)下列命题的逆命题不成立的是( )
A.两直线平行,同旁内角互补B.如果两个实数相等,那么它们的平方相等
C.平行四边形的对角线互相平分D.全等三角形的对应边相等
4、(4分)若一个正多边形的一个外角是30°,则这个正多边形的边数是( )
A.9B.10C.11D.12
5、(4分)如图,以正方形的边为一边向内作等边,连结,则的度数为( )
A.B.C.D.
6、(4分)无理数2﹣3在( )
A.2和3之间B.3和4之间C.4和5之间D.5和6之间
7、(4分)汽车开始行使时,油箱内有油升,如果每小时耗油升,则油箱内剩余油量(升)与行驶时间(时的关系式为( )
A.B.C.D.以上答案都不对
8、(4分)如图 ,矩形 ABCD 中,AB>AD,AB=a,AN 平分∠DAB,DM⊥AN 于点 M,CN⊥AN于点 N.则 DM+CN 的值为(用含 a 的代数式表示)( )
A.aB. aC.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为_____.
10、(4分)如图,在反比例函数与的图象上分别有一点,,连接交轴于点,若且,则__________.
11、(4分)一个黄金矩形的长为2,则其宽等于______.
12、(4分)已知xy=﹣1,x+y=2,则x3y+x2y2+xy3=_____.
13、(4分)已知关于x的方程x2-2ax+1=0有两个相等的实数根,则a=____.
三、解答题(本大题共5个小题,共48分)
14、(12分)化简:()÷并解答:
(1)当x=1+时,求原代数式的值;
(2)原代数式的值能等于﹣1吗?为什么?
15、(8分)列方程解应用题
今年1月下旬以来,新冠肺炎疫情在全国范围内迅速蔓延,而比疫情蔓延速度更快的是口罩恐慌. 企业复工复产急需口罩,某大型国有企业向生产口罩的A、B两厂订购口罩,向A厂支付了1.32万元,向B厂支付了2.4万元,且在B厂订购的口罩数量是A长的2倍,B厂的口罩每只比A厂低0.2元. 求A、B两厂生产的口罩单价分别是多少元?
16、(8分)如图,在平面直角坐标系中,直线分别交两轴于点,点的横坐标为4,点在线段上,且.
(1)求点的坐标;
(2)求直线的解析式;
(3)在平面内是否存在这样的点,使以为顶点的四边形为平行四边形?若存在,请求出点的坐标;若不存在,不必说明理由.
17、(10分)计算:
(1)2﹣6+3;
(2)(1+)(﹣)+(﹣)×.
18、(10分)已知某企业生产的产品每件出厂价为70元,其成本价为25元,同时在生产过程中,平均每生产一件产品有1 m3的污水排出,为达到排污标准,现有以下两种处理污水的方案可供选择.
方案一:将污水先净化处理后再排出,每处理1 m3污水的费用为3元,并且每月排污设备损耗为24 000元.
方案二:将污水排到污水厂统一处理,每处理1 m3污水的费用为15元,设该企业每月生产x件产品,每月利润为y元.
(1)分别写出该企业一句方案一和方案二处理污水时,y与x的函数关系式;
(2)已知该企业每月生产1 000件产品,如果你是该企业的负责人,那么在考虑企业的生产实际前提下,选择哪一种污水处理方案更划算?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)关于x的一元二次方程(x+1)(x+7)= -5的根为_______________.
20、(4分)菱形的两条对角线长分别是6和8,则菱形的边长为_____.
21、(4分)如图,已知,点是等腰斜边上的一动点,以为一边向右下方作正方形,当动点由点运动到点时,则动点运动的路径长为______.
22、(4分)计算.
23、(4分)已知,,则的值为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:+
25、(10分)中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了解学生对四大名著的阅读情况,就“四大古典名著”你读完了几部的问题在全校900名学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.
请根据以上信息,解决下列问题
(1)本次调查被调查的学生__________名,学生阅读名著数量(部)的众数是__________,中位数是__________;
(2)扇形统计图中“1部”所在扇形的圆心角为__________度;
(3)请将条形统计图补充完整;
(4)试估算全校大约有多少学生读完了3部以上(含3部)名著.
26、(12分)某报社为了了解市民“获取新闻的最主要途径”,开展了一次抽样调查,根据调查结果绘制了如图三种不完整的统计图表.
请根据图表信息解答下列问题:
(1)统计表中的m= ,n= ,并请补全条形统计图;
(2)扇形统计图中“D”所对应的圆心角的度数是 ;
(3)若该市约有120万人,请你估计其中将“电脑上网”和“手机上网”作为“获取新闻的最主要途径”的总人数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
由y=-1x中k=-1<0,可知y随x的增大而减小,再结合1<1即可得出y1、y1的大小关系.
【详解】
解:∵正比例函数y=-1x中,k=-1<0,
∴y随x增大而减小,
∵1<1,
∴y1>y1.
故选:B.
本题考查了正比例函数的图象与性质,注意:y=kx(k≠0)中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.
2、C
【解析】
设∠BAC=x,依据旋转的性质,可得∠DAE=∠BAC=x,∠ADB=∠ABD=2x,再根据三角形内角和定理即可得出x.
【详解】
设∠BAC=x,由旋转的性质,可得
∠DAE=∠BAC=x,
∴∠DAC=∠DBA=2x,
又∵AB=AD,
∴∠ADB=∠ABD=2x,
又∵△ABD中,∠BAD+∠ABD+∠ADB=180°,
∴x+2x+2x=180°,
∴x=36°,
即∠BAC=36°,
故选C.
本题主要考查了旋转的性质以及三角形内角和定理,解题时注意:旋转前、后的图形全等.
3、B
【解析】
把一个命题的条件和结论互换就得到它的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【详解】
选项A,两直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,正确,成立;
选项B,如果两个实数相等,那么它们的平方相等的逆命题是平方相等的两个数相等,错误,不成立,如(﹣3)2=32,但﹣3≠3;
选项C,平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,正确,成立;
选项D,全等三角形的对应边相等的逆命题是对应边相等的三角形全等,正确,成立;
故选B.
本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
4、D
【解析】
首先根据题意计算正多边形的内角,再利用正多边形的内角公式计算,即可得到正多边的边数.
【详解】
根据题意正多边形的一个外角是30°
它的内角为:
所以根据正多边形的内角公式可得:
可得
故选D.
本题主要考查正多边形的内角公式,是基本知识点,应当熟练掌握.
5、C
【解析】
在正方形ABCD中,△ABE是等边三角形,可求出∠AEB、∠DAE的大小以及推断出AD=AE,从而可求出∠AED,再根据角的和差关系求出∠BED的度数.
【详解】
解:在正方形ABCD中,∠ABC=90°,AB=BC.
∵△ABE是等边三角形,
∴∠AEB=∠BAE=60°,AE=AB,
∴∠DAE=90°−60°=30°,AD=AE,
∴∠AED=∠ADE=(180°−30°)=75°,
∴∠BED=∠AEB+∠AED=60°+75°=135°.
故选:C.
本题考查了正方形的性质、等边三角形的性质.根据正方形和等边三角形的性质推知AD=AE是解题的关键.
6、B
【解析】
首先得出2的取值范围进而得出答案.
【详解】
∵2=,
∴6<<7,
∴无理数2-3在3和4之间.
故选B.
此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键.
7、C
【解析】
根据油箱内余油量=原有的油量-x小时消耗的油量,可列出函数关系式.
【详解】
解:依题意得,油箱内余油量Q(升)与行驶时间t(小时)的关系式为:Q=40-5t(0≤t≤8),
故选:C.
此题主要考查了函数关系式,本题关键是明确油箱内余油量,原有的油量,t小时消耗的油量,三者之间的数量关系,根据数量关系可列出函数关系式.
8、C
【解析】
根据“AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N”得∠MDC=∠NCD=45°,cs45°= ,所以DM+CN=CDcs45°;再根据矩形ABCD,AB=CD=a,DM+CN的值即可求出.
【详解】
∵AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N,
∴∠ADM=∠MDC=∠NCD=45°,
∴=CD,
在矩形ABCD中,AB=CD=a,
∴DM+CN=acs45°=a.
故选C.
此题考查矩形的性质,解直角三角形,解题关键在于得到cs45°=
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
由方程有实数根,可得出b1﹣4ac≥0,代入数据即可得出关于m的一元一次不等式,解不等式即可得m的取值范围,再找出其内的最大偶数即可.
【详解】
解:当m﹣1=0时,原方程为1x+1=0,
解得:x=﹣,
∴m=1符合题意;
当m﹣1≠0时,△=b1﹣4ac=11﹣4(m﹣1)≥0,
即11﹣4m≥0,
解得:m≤3且m≠1.
综上所述:m≤3,
∴偶数m的最大值为1.
故答案为:1.
本题考查了根的判别式以及解一元一次方程,分方程为一元一次或一元二次方程两种情况找出m的取值范围是解题的关键.
10、
【解析】
过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,根据平行线分线段成比例定理得:NO=2MO=2,从而可得F(2,2),结合E(-1,1)可得直线EF的解析式,求出点G的坐标后即可求解.
【详解】
过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,如图:
∴EM∥GO∥FN
∵2EG=FG
∴根据平行线分线段成比例定理得:NO=2MO
∵E(-1,1)
∴MO=1
∴NO=2
∴点F的横坐标为2
∵F在的图象上
∴F(2,2)
又∵E(-1,1)
∴由待定系数法可得:直线EF的解析式为:y=
当x=0时,y=
∴G(0,)
∴OG=
故答案为:.
此题考查反比例函数的综合应用,平行线分线段成比例定理,待定系数法求一次函数的解析式,解题关键在于掌握待定系数法求解析式.
11、
【解析】
由黄金矩形的短边与长边的比为,可设黄金矩形的宽为x,列方程即可求出x的值.
【详解】
解:∵黄金矩形的短边与长边的比为,
∴设黄金矩形的宽为x,
则,
解得,x=﹣1,
故答案为:.
本题考查了黄金矩形的性质,解题关键是要知道黄金矩形的短边与长边的比为.
12、-2
【解析】
先提公因数法把多项式x3y+x2y2+xy3因式分解,再根据完全平方公式因式分解即可求解.
【详解】
解:∵xy=﹣1,x+y=2,
∴x3y+x2y2+xy3=
代入数据,原式=
故答案为:.
本题考查了因式分解,先提公因式,然后再套完全平方公式即可求解.
13、
【解析】
根据方程的系数结合根的判别式△=0,可得出关于a的一元二次方程,解之即可得出结论.
【详解】
解:∵关于x的方程x2-2ax+1=0有两个相等的实数根,
∴△=(-2a)2-4×1×1=0,
解得:a=±1.
故答案为:±1.
本题考查了根的判别式,牢记“当△=0时,方程有两个相等的两个实数根”是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)+1(2)不能
【解析】
将原式进行化简可得出原式=.
(1)代入x=1+,即可求出原式的值;
(2)令原式等于﹣1,可求出x=0,由原式中除数不能为零,可得出原代数式的值不能等于﹣1.
【详解】
解:原式=[﹣]•=(﹣)••.
(1)当x=1+时,原式==+1.
(2)不能,理由如下:
解=﹣1,得:x=0,
∵当x=0时,原式中除数=0,∴原代数式的值不能等于﹣1.
本题考查了分式的化简求值,将原式化简为是解题的关键.
15、A厂生产的口罩单价为2.2元,B厂生产的口罩单价为2元.
【解析】
设B厂生产的口罩单价为x元,则A厂生产的口罩单价为(x+0.2)元,根据数量=总价÷单价结合在B厂订购的口罩数量是A厂的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论.
【详解】
解:设B厂生产的口罩单价为x元,则A厂生产的口罩单价为(x+0.2)元,
依题意得:,
解得:x=2,
经检验,x=2是原方程的解,且符合题意,
∴x+0.2=2.2,
答:A厂生产的口罩单价为2.2元,B厂生产的口罩单价为2元.
本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
16、(1)点;(2);(3)点的坐标是,,.
【解析】
(1)首先根据直线y=-x+8分别交两轴于点A、B,可得点A的坐标是(8,0),点B的坐标是(0,8),然后根据点在线段上,且,即可求出点D的坐标;
(2)利用待定系数法可求直线CD的解析式;
(3)设点,分情况讨论,由平行四边形的性质和中点坐标公式,可求出点F的坐标.
【详解】
解:(1)∵直线分别交两轴于点,
∴当时,,当时,
∴点,点
∵点在线段上,且.
∴点
(2)∵点的横坐标为4,且在直线上,
∴,
∴点
设直线的解析式
∴,解得:
∴直线解析式为:.
(3)设点
①若以为边,
∵四边形是平行四边形,∴互相平分,
∵点,点,点,点
∴,解得,
∴点
②若以为边
∵四边形是平行四边形,∴互相平分,
∵点,点,点,点
∴,解得,
∴点
③若以为边,
∵四边形是平行四边形,∴互相平分,
∵点,点,点,点
∴,解得,
∴点
综上所述:点的坐标是,,.
此题考查平行四边形的性质,中点坐标公式,求一次函数的解析式,解题关键在于分情况讨论.
17、(1)14;(2)
【解析】
(1)直接利用二次根式的性质化简得出答案;
(2)首先利用二次根式乘法运算法则化简,进而计算得出答案.
【详解】
(1)原式=4-6×+12
=4-2+12
=14;
(2)原式=-+-3+6-3
=.
此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.
18、(1)选择方案一时,月利润为y1=42x-24 000;选择方案二时,月利润为y2=30x;(2)选择方案一更划算.
【解析】
(1)方案一的等量关系是利润=产品的销售价-成本价-处理污水的费用-设备损耗的费用,方案二的等量关系是利润=产品的销售价-成本价-处理污水的费用.可根据这两个等量关系来列出关于利润和产品件数之间的函数关系式;
(2)可将(1)中得出的关系式进行比较,判断出哪个方案最省钱.
【详解】
解 (1)因为工厂每月生产x件产品,每月利润为y万元,由题意得
选择方案一时,月利润为y1=(70-25)x-(3x+24 000)=42x-24 000,
选择方案二时,月利润为y2=(70-25)x-15x=30x;
(2)当x=1 000时,y1=42x-24 000=18 000,
y2=30x=30 000,
∵y1<y2.
∴选择方案二更划算.
本题考查的是一次函数的综合运用,熟练掌握一次函数是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
整理成一般式后,利用因式分解法求解可得.
【详解】
解:整理得:x2+8x+12=0,
(x+2)(x+1)=0,
x+2=0,x+1=0,
x1=-2,x2=-1.
故答案为:.
本题考查因式分解法解一元二次方程,能把一元二次方程转化成一元一次方程是解题的关键.
20、1
【解析】
根据菱形对角线垂直平分,再利用勾股定理即可求解.
【详解】
解:因为菱形的对角线互相垂直平分,
根据勾股定理可得菱形的边长为=1.
故答案为:1.
此题主要考查菱形的边长求解,解题的关键是熟知菱形的性质及勾股定理的运用.
21、
【解析】
连接,根据题意先证出,然后得出,所以点运动的路径长度即为点从到的运动路径,继而得出结论
【详解】
连接,
∵,是等腰直角三角形,
∴,∠ABC=90°
∵四边形是正方形
∴BD=BF,∠DBF=∠ABC=90°,
∴∠ABD=∠CBF,
在△DAP与△BAP中
∴,
∴,
点运动的路径长度即为点从到的运动路径,为.
故答案为:
本题主要考查的是等腰直角三角形的性质、等边三角形的性质、正方形的性质以及全等三角形的性质和判定,熟练掌握全等三角形的判定和性质是解题的关键.
22、-1
【解析】
首先化成同指数,然后根据积的乘方法则进行计算.
【详解】
解:原式=×(-1)=×(-1)=1×(-1)=-1.
考点:幂的简便计算.
23、
【解析】
由,,计算可得a+b=4,ab=1,再把因式分解可得ab(a+b),整体代入求值即可.
【详解】
∵,,
∴a+b=4,ab=1
∴=ab(a+b)=4.
故答案为:4.
本题考查了因式分解的应用,正确把进行因式分解是解决问题的关键.
二、解答题(本大题共3个小题,共30分)
24、3+1.
【解析】
先利用平方根的性质,然后化简后合并即可.
【详解】
解:原式=3+1
=3+1.
此题考查二次根式的混合运算,解题关键在于掌握把二次根式化为最简二次根式.
25、(1)40,1,2;(2)126;(3)见解析;(4)315人.
【解析】
(1)根据统计图中的数据可以求得众数、中位数,
(2)据统计图中的数据可以求得相应的圆心角的度数;
(3)根据统计图中的数据,可以求得读一部的学生数,从而可以将条形统计图补充完整;(4)根据统计图中的数据可以求得看完3部以上(包含3部)的有多少人.
【详解】
解:(1)本次调查的学生有:10×25%=40(人),
读一部的有:40-2-10-8-6=14(人),
本次调查所得数据的众数是1部,
∵2+14+10=26>21,2+14<20,
∴中位数为2部,
(2)扇形统计图中“1部”所在扇形的圆心角为:,
故答案为:.
(3)补全的条形统计图如右图所示;
(4))∵=315(人),
∴看完3部以上(包含3部)的有315人.
本题考查条形统计图、扇形统计图、中位数、众数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.
26、 (1) 400,100;(2) 36°;(3) 81.6万人
【解析】
(1)由等级C的人数除以占的百分比,得出调查总人数即可,进而确定出等级B与等级D的人数,进而求出m与n的值;
(2)由D占的百分比,乘以360即可得到结果;
(3)根据题意列式计算即可得到结论.
【详解】
解:(1)m=140÷14%×40%=400;n=140÷14%﹣280﹣400﹣140﹣80=100;
条形统计图如下:
故答案为:400,100;
(2)扇形统计图中“D”所对应的圆心角的度数是 ×360°=36°;
故答案为:36°;
(3) ×120=81.6万人,
答:其中将“电脑上网”和“手机上网”作为“获取新闻的最主要途径”的总人数81.6万人
此题考查统计表,扇形统计图,条形统计图,解题关键在于看懂图中数据
题号
一
二
三
四
五
总分
得分
组别
获取新闻的最主要途径
人数
A
电脑上网
280
B
手机上网
m
C
电视
140
D
报纸
n
E
其它
80
相关试卷
这是一份2024年新疆乌鲁木齐市数学九上开学质量检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份新疆奇台县2023-2024学年数学九上期末统考模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,用配方法解方程,方程应变形为,已知二次函数等内容,欢迎下载使用。
这是一份2023-2024学年新疆奇台县八上数学期末经典模拟试题含答案,共7页。试卷主要包含了若4x2+,若,且,则的值可能是等内容,欢迎下载使用。