|试卷下载
终身会员
搜索
    上传资料 赚现金
    吉林省长春吉大附中实验学校2024-2025学年高二上学期第一次月考数学试题(解析版)
    立即下载
    加入资料篮
    吉林省长春吉大附中实验学校2024-2025学年高二上学期第一次月考数学试题(解析版)01
    吉林省长春吉大附中实验学校2024-2025学年高二上学期第一次月考数学试题(解析版)02
    吉林省长春吉大附中实验学校2024-2025学年高二上学期第一次月考数学试题(解析版)03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    吉林省长春吉大附中实验学校2024-2025学年高二上学期第一次月考数学试题(解析版)

    展开
    这是一份吉林省长春吉大附中实验学校2024-2025学年高二上学期第一次月考数学试题(解析版),共21页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    1. 在空间直角坐标系中,已知点,点则()
    A. 点和点关于轴对称B. 点和点关于轴对称
    C. 点和点关于轴对称D. 点和点关于原点中心对称
    【答案】B
    【解析】
    【分析】根据空间直角坐标系中的对称关系直接可得解.
    由题得点与点的横坐标与竖坐标互为相反数,纵坐标相同,
    所以点和点关于轴对称,
    故选:B.
    2. 向量,若,则()
    A. B.
    C. D.
    【答案】C
    【解析】
    【分析】利用空间向量平行列出关于的方程组,解之即可求得的值.
    因为,所以,由题意可得,
    所以,则.
    故选:C.
    3直三棱柱中,若,则()
    A. B.
    C. D.
    【答案】D
    【解析】
    【分析】由空间向量线性运算法则即可求解.
    .
    故选:D.
    4. 下列可使非零向量构成空间的一组基底的条件是()
    A. 两两垂直B.
    C. D.
    【答案】A
    【解析】
    【分析】由基底定义和共面定理即可逐一判断选项A、B、C、D得解.
    由基底定义可知只有非零向量不共面时才能构成空间中的一组基底.
    对于A,因为非零向量两两垂直,所以非零向量不共面,可构成空间的一组基底,故A正确;
    对于B,,则共线,由向量特性可知空间中任意两个向量是共面的,所以与共面,故B错误;
    对于C,由共面定理可知非零向量共面,故C错误;
    对于D,即,故由共面定理可知非零向量共面,故D错误.
    故选:A.
    5. 已知,则直线恒过定点()
    A. B.
    C. D.
    【答案】A
    【解析】
    【分析】由题意可得,可得定点坐标.
    因为,所以,
    由,可得,所以,
    当时,所以对为任意实数均成立,
    故直线过定点.
    故选:A.
    6. 已知:,:,则两圆的位置关系为()
    A. 相切B. 外离C. 相交D. 内含
    【答案】C
    【解析】
    【分析】先将圆化为标准方程,从而求出圆心距,再根据圆心距与两圆半径的关系,即可得解.
    因为可化为,则,半径,
    因为可化为,
    则,半径,
    则,因为,所以两圆相交.
    故选:C.
    7. 已知点为椭圆上任意一点,直线过的圆心且与交于两点,则的取值范围是()
    A. B. C. D.
    【答案】A
    【解析】
    【分析】根据圆心为的中点,利用向量运算将用来表示,转化为椭圆上一点到焦点的距离范围求解即可.
    ,即,
    则圆心,半径为.
    椭圆方程,,
    则,
    则圆心为椭圆的焦点,
    由题意的圆的直径,且
    如图,连接,由题意知为中点,则,
    可得
    .
    点椭圆上任意一点,
    则,,
    由,
    得.
    故选:A.
    【点睛】关键点点睛:解决此题的关键于利用中点性质,将多动点有关的数量积,通过向量的线性运算与数量积运算性质,转化为动点与定点圆心连线的长度来表示,进而可借助椭圆上任意一点到焦点距离的范围使问题得解.
    8. 已知圆和圆交于两点,点在圆上运动,点在圆上运动,则下列说法正确的是()
    A. 圆和圆关于直线对称
    B. 圆和圆的公共弦长为
    C. 的取值范围为
    D. 若为直线上的动点,则的最小值为
    【答案】D
    【解析】
    【分析】求出圆心和半径,再结合中垂线知识可判断A,利用等等这些距离公式结合勾股定理可判断B,由题意可知,当点和重合时,的值最小,当,,,四点共线时,的值最大,进而可判断C,求出关于直线对称点的坐标,再结合两点间距离公式可判断D.
    对于A,和圆,
    圆心和半径分别是,
    则两圆心中点为,
    若圆和圆关于直线对称,则直线是的中垂线,
    但两圆心中点不在直线上,故A错误;
    对于B,到直线的距离,
    故公共弦长为,B错误;
    对于C,圆心距为,当点和重合时,的值最小,
    当四点共线时,的值最大为,
    故的取值范围为,C错误;
    对于D,如图,设关于直线对称点为,
    则解得即关于直线对称点为,
    连接交直线于点,此时最小,

    即的最小值为,D正确.
    故选:D.
    二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.
    9. 已知向量,,则下列正确的是()
    A. B.
    C. D. 在方向上的投影向量为
    【答案】ACD
    【解析】
    【分析】ABC选项,根据得到且,AC正确,B错误;D选项,利用投影向量的求解公式得到答案.
    ABC选项,由题意得,故且,AC正确,B错误;
    D选项,在方向上的投影向量为,D正确.
    故选:ACD
    10. 布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖在正六边形上画了具有视觉效果的正方体图案,如图,把三片这样的达·芬奇方砖拼成组合,把这个组合再转换成空间几何体.若图中每个正方体的棱长为1,则下列结论正确的是()
    A. B. 点到直线的距离是
    C. D. 异面直线与所成角的正切值为4
    【答案】ABC
    【解析】
    【分析】利用空间向量的线性运算判断A,建立空间直角坐标系利用空间向量模的坐标求法判断C,利用投影公式结合勾股定理判断B,利用线线角的向量求法判断D即可.
    依题意得,故A正确;
    如图,以为坐标原点,建立空间直角坐标系,

    对于BC,,
    所以,设,
    则点到直线距离,故BC正确;
    对于D,因为,
    所以,所以,
    所以异面直线与所成角的正切值为,故D错误.
    故选:ABC.
    【点睛】关键点点睛:本题考查立体几何,解题关键是建立空间直角坐标系,然后利用投影公式结合勾股定理得到所要求的长度即可.
    11. 已知实数满足方程,则下列说法正确的是()
    A. 的最大值为B. 的最大值为
    C. 的最大值为D. 的最小值为
    【答案】ABD
    【解析】
    【分析】令,,,根据其几何意义求解判断ABC,作出与圆图象求最值判断D即可.
    根据题意,方程,即,
    表示圆心为,半径为的圆,由此分析选项:
    对于A,设,即,
    直线与圆有公共点,
    所以,解得
    则的最大值为,故A正确;
    对于B,设,其几何意义为圆上的点到原点的距离,
    所以的最大值为,
    故最大值为,故B正确;
    对于C,设,则,直线与圆有公共点,
    则,解得,即的最大值为,故C错误;
    对于D,设,作出图象为正方形,作出圆,如图,
    由图象可知,正方形与圆有公共点A时,有最小值,
    即的最小值为,故D正确;
    故选:ABD
    三、填空题:本题共3小题,每小题5分,共15分.
    12. O为空间任意一点,若,若ABCP四点共面,则______________.
    【答案】##0.125
    【解析】
    【分析】利用空间向量共面基本定理的推论可求出的值.
    空间向量共面的基本定理的推论:,且、、不共线,
    若、、、四点共面,则,
    因为为空间任意一点,若,且、、、四点共面,
    所以,,解得.
    故答案为:.
    13. 已知点和点,是动点,且直线与的斜率之积等于,则动点的轨迹方程为______.
    【答案】
    【解析】
    【分析】设动点,斜率用坐标表示,由斜率之积为可得出之间的关系式,进而得的轨迹方程.
    设动点的坐标为,又,,
    所以的斜率,的斜率,
    由题意可得,
    化简,得点的轨迹方程为.
    故答案为:
    14. 已知点为圆上位于第一象限内的点,过点作圆的两条切线,切点分别为,直线分别交轴于两点,则_______,_______.
    【答案】 ①. 2 ②.
    【解析】
    【分析】设直接计算可得,由角平分线定理可得,由此求出,得出点坐标,再由直角三角形求出点坐标即可得解.
    圆的标准方程为,圆心,
    则为的角平分线,所以.
    设,则,
    所以,则,
    即,解得,则,
    所以点与重合,
    此时,可得,
    所以.
    故答案为:;
    【点睛】关键点点睛:根据角平分线定理,可转化为,建立方程求出参数,得到圆的圆心、半径,求出M的坐标是解题的关键.
    四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.
    15. 分别求满足下列各条件的椭圆的标准方程.
    (1)已知椭圆的离心率为,短轴长为;
    (2)椭圆与有相同的焦点,且经过点,求椭圆的标准方程.
    【答案】(1)或;
    (2).
    【解析】
    【分析】(1)由题意得,解出该方程组即可由椭圆焦点在x轴上或在y轴上得解;
    (2)先求出椭圆焦点即可得椭圆焦点坐标为,进而可设圆方程为且,解出和即可得解.
    【小问1】
    由题得,
    所以椭圆的标准方程为或.
    【小问2】
    椭圆满足,故该椭圆焦点坐标为,
    因为椭圆与有相同的焦点,且经过点,
    所以可设椭圆方程为,且,解得,
    故,解得(舍去)或,故.
    所以椭圆的标准方程为.
    16. 已知圆心为的圆经过点,且圆心在直线上.
    (1)求圆的方程;
    (2)已知直线过点且直线截圆所得的弦长为2,求直线的一般式方程.
    【答案】(1)
    (2)或
    【解析】
    【分析】(1)由圆心在弦的垂直平分线上,可先求线段的中垂线方程,再联立直线求出圆心坐标,再求出半径即可得圆的方程;
    (2)讨论直线斜率是否存在,若存在设出直线的点斜式方程,由弦长与半径先求出圆心到直线的距离,再由点线距离公式待定斜率即可得所求.
    【小问1】
    由题意,则的中点为,且,
    故线段中垂线的斜率为,
    则中垂线的方程为,即,
    联立,解得,即圆心,
    则半径,
    故圆的方程为.
    【小问2】
    当直线斜率不存在时,直线的方程为,
    圆心到直线的距离为,由半径,
    则直线截圆所得的弦长,满足题意;
    当直线斜率存在时,设直线方程为,
    化为一般式得,
    由直线截圆所得的弦长,半径,半弦长为.
    则圆心到直线的距离,又圆心,
    由点到直线的距离公式得,
    解得,故直线方程为,
    化为一般式方程为:.
    综上所述,直线的方程为或.
    17. 如图,四边形与四边形均为等腰梯形,,,,,,,平面,为上一点,且,连接、、.
    (1)证明:平面;
    (2)求平面与平面的夹角的余弦值.
    【答案】(1)证明见
    (2)
    【解析】
    【分析】(1)根据线面垂直的性质,结合线面垂直的判定定理、平行线的性质进行证明即可;
    (2)作,垂足为,根据平行四边形和矩形的判定定理,结合(1)的结论,利用勾股定理,可以以,,所在的直线分别为轴、轴、轴建立空间直角坐标系,利用空间向量夹角公式进行求解即可.
    【小问1】
    因为平面,又平面,
    所以.又,且,
    所以平面.因为,所以平面.
    【小问2】
    作,垂足为.则.又,
    所以四边形是平行四边形,又,
    所以四边形是矩形,又四边形为等腰梯形,且,,
    所以.
    由(1)知平面,所以.又,
    所以.在中,.
    在中,.
    由上可知,以,,所在的直线分别为轴、轴、轴建立如图所示空间直角坐标系.
    则,,,,,
    所以,,,,
    设平面的法向量为,
    由,得,可取.
    设平面的法向量为,
    由,得,可取.
    因此,.
    依题意可知,平面与平面的夹角的余弦值为.
    18. 已知圆与圆内切.
    (1)求的值.
    (2)直线与圆交于两点,若,求的值;
    (3)过点作倾斜角互补的两条直线分别与圆相交,所得的弦为和,若,求实数的最大值.
    【答案】(1);
    (2);
    (3).
    【解析】
    【分析】(1)由圆O与圆E内切以及圆E半径和圆心O与圆E的位置关系可得,进而得解.
    (2)设,联立圆与直线方程求出和即可由数量积计算得解.
    (3)分直线斜率不存在、斜率为0、斜率存在且不为0三种情况分类讨论,结合点到直线距离以及点斜式依次得和,接着分和结合对勾函数的单调性和值域即可求出时的取值范围,从而得解.
    【小问1】
    由题意得,,
    故圆心,圆E的半径为,
    因为,故在圆E上,
    所以圆O的半径,且,故.
    【小问2】
    由(1)知,联立,
    设,则恒成立,
    且,
    所以,
    所以,解得.
    【小问3】
    如图,因为直线和直线倾斜角互补,
    所以当直线斜率不存在时,此时直线的斜率也不存在,
    此时,,
    当直线的斜率为0时,直线的斜率为0,不满足倾斜角互补,
    当直线斜率存在且不为0时,设直线即,
    圆心O到直线的距离为,
    故,
    由直线方程得直线的方程为即,
    同理得,
    则,
    当,,
    因为对勾函数在上单调递减,在上单调递增,
    所以时,,
    所以时,故,
    所以,
    当,,
    由上知时,故,
    所以.
    综上,.
    19. 已知两个非零向量,在空间任取一点,作,则叫做向量的夹角,记作.定义与的“向量积”为:是一个向量,它与向量都垂直,它的模.如图,在四棱锥中,底面为矩形,底面,
    为线段上一点,.
    (1)求的长;
    (2)若为的中点,求二面角的正弦值;
    (3)若为线段上一点,且满足,求.
    【答案】(1)2(2)
    (3)
    【解析】
    【分析】(1)建立空间直角坐标系,设,利用向量的坐标运算将条件等式转化为关于的方程求解可得;
    (2)利用法向量方法求二面角;
    (3)设,,利用向量的坐标运算将条件转化为垂直关系,结合模长等量关系,建立的方程组求解可得.
    【小问1】
    由题意,以为坐标原点,分别以所在直线为轴,建立如图所示的空间直角坐标系.
    设,由已知,
    则,
    则,
    则,
    且.
    由题意知,
    所以有,
    则,解得(舍去),
    故的长为.
    【小问2】
    由(1)知,,
    又为的中点,则,,
    平面的一个法向量为,
    设平面的法向量为,
    则,令,则.
    故平面的一个法向量为,
    设二面角的平面角为,且,
    则,
    故.
    故二面角的正弦值为.
    【小问3】
    由(1)可得,
    由题意,设,,

    则,
    由可知,,
    且,由,
    则,解得;
    则,
    则解得,,
    则,
    又,解得.
    【点睛】关键点点睛:解决此题的关键在于理解新定义“向量积”,首先它是一个向量,解题中也要从方向与长度两个方面分析,如第三问中的转化:一是该向量的垂直关系可得与两个等式;二是向量的模长.由此通过建立空间直角坐标系向量坐标化转化为方程组的求解即可.
    相关试卷

    吉林省长春吉大附中实验学校2024-2025学年高二上学期第一次月考数学试题(无答案): 这是一份吉林省长春吉大附中实验学校2024-2025学年高二上学期第一次月考数学试题(无答案),共4页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    吉林省长春吉大附中实验学校2024-2025学年高一上学期月考测试(一)数学试卷: 这是一份吉林省长春吉大附中实验学校2024-2025学年高一上学期月考测试(一)数学试卷,共4页。

    吉林省长春市朝阳区长春吉大附中实验学校2024-2025学年高三上学期开学数学试题(原卷版+解析版): 这是一份吉林省长春市朝阳区长春吉大附中实验学校2024-2025学年高三上学期开学数学试题(原卷版+解析版),文件包含吉林省长春市朝阳区长春吉大附中实验学校2024-2025学年高三上学期开学数学试题原卷版docx、吉林省长春市朝阳区长春吉大附中实验学校2024-2025学年高三上学期开学数学试题解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map