年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2025届辽宁省抚顺市新抚区数学九上开学预测试题【含答案】

    2025届辽宁省抚顺市新抚区数学九上开学预测试题【含答案】第1页
    2025届辽宁省抚顺市新抚区数学九上开学预测试题【含答案】第2页
    2025届辽宁省抚顺市新抚区数学九上开学预测试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届辽宁省抚顺市新抚区数学九上开学预测试题【含答案】

    展开

    这是一份2025届辽宁省抚顺市新抚区数学九上开学预测试题【含答案】,共24页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在梯形ABCD中,,,,交BC于点若,,则CD的长是
    A.7B.10C.13D.14
    2、(4分)下列事件:①上海明天是晴天,②铅球浮在水面上,③平面中,多边形的外角和都等于360度,属于确定事件的个数有( )
    A.0个B.1个C.2个D.3个
    3、(4分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )
    A.B.C.D.
    4、(4分)若一次函数的图象经过第二、三、四象限,则的取值范围为( )
    A.B.C.D.
    5、(4分)如图,正方形ABCD中,AB=12,点E在边CD上,且BG=CG,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正确结论的个数是( )
    A.2个B.3个C.4个D.5个
    6、(4分)计算的值为( )
    A.9B.1C.4D.0
    7、(4分)如图,某工厂有甲,乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度 与注水时间 之间的函数关系图象可能是如图,某工厂有甲,乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度 与注水时间 之间的函数关系图象可能是( )
    A.B.C.D.
    8、(4分)如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是( )
    A.AB=36mB.MN∥ABC.MN=CBD.CM=AC
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)计算的结果等于_______.
    10、(4分)如图,双曲线()与直线()的交点的横坐标为,2,那么当时,_______(填“”、“”或“”).
    11、(4分)直线l与直线y=3﹣2x平行,且在y轴上的截距是﹣5,那么直线l的表达式是_____.
    12、(4分)如图在菱形ABCD中,∠A=60°,AD=,点P是对角线AC上的一个动点,过点P作EF⊥AC交AD于点E,交AB于点F,将△AEF沿EF折叠点A落在G处,当△CGB为等腰三角形时,则AP的长为__________.
    13、(4分)若分式的值是0,则x的值为________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)甲乙两人同时登山,甲乙两人距地面的高度(米与登山时间(分之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
    (1)甲登山的速度是 米分钟,乙在地提速时距地面的高度为 米;
    (2)直接写出甲距地面高度(米和(分之间的函数关系式;
    (3)若乙提速后,乙的速度是甲登山速度的3倍.请问登山多长时间时,乙追上了甲,此时乙距地的高度为多少米?
    15、(8分)已知抛物线与轴交于两点,与轴交于点.
    (1)求的取值范围;
    (2)若,直线经过点,与轴交于点,且,求抛物线的解析式;
    (3)若点在点左边,在第一象限内,(2)中所得到抛物线上是否存在一点,使直线分的面积为两部分?若存在,求出点的坐标;若不存在,请说明理由.
    16、(8分)在菱形ABCD中,∠BAD=60°.
    (1)如图1,点E为线段AB的中点,连接DE,CE,若AB=4,求线段EC的长;
    (2)如图2,M为线段AC上一点(M不与A,C重合),以AM为边,构造如图所示等边三角形AMN,线段MN与AD交于点G,连接NC,DM,Q为线段NC的中点,连接DQ,MQ,求证:DM=2DQ.
    17、(10分)某公司销售员的奖励工资由两部分组成:基本工资,每人每月2400元;奖励工资,每销售一件产品,奖励10元.
    (1)设某销售员月销售产品件,他应得的工资为元,求与之间的函数关系式;
    (2)若该销售员某月工资为3600元,他这个月销价了多少件产品?
    (3)要使月工资超过4200元,该月的销售量应当超过多少件?
    18、(10分)先化简:,再从的范围内选取一个合适的整数作为的值代入求值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分) “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为_____.
    20、(4分)如图,在△ABC中,AB=5,AC=7,BC=10,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,则PQ的长______.
    21、(4分)如图,正比例函数y=ax的图象与反比例函数y=的图象相交于点A,B,若点A的坐标为(-2,3),则点B的坐标为_________.
    22、(4分)二次根式有意义的条件是______________.
    23、(4分)如图,直线AB的解析式为y=x+4,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF的最小值为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.
    (1)每个文具盒、每支钢笔各多少元?
    (2)若本次表彰活动,老师决定购买10件作为奖品,若购买个文具盒,10件奖品共需元,求与的函数关系式.如果至少需要购买3个文具盒,本次活动老师最多需要花多少钱?
    25、(10分)如图,在ABCD中,AD∥BC,AC=BC=4,∠D=90°,M,N分别是AB、DC的中点,过B作BE⊥AC交射线AD于点E,BE与AC交于点F.
    (1)当∠ACB=30°时,求MN的长:
    (2)设线段CD=x,四边形ABCD的面积为y,求y与x的函数关系式及其定义域;
    (3)联结CE,当CE=AB时,求四边形ABCE的面积.
    26、(12分)在课外活动中,我们要研究一种四边形--筝形的性质.
    定义:两组邻边分别相等的四边形是筝形(如图1).
    小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.
    下面是小聪的探究过程,请补充完整:
    (1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是 ;
    (2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;
    (3)如图2,在筝形ABCD中,AB=4,BC=2,∠ABC=120°,求筝形ABCD的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据平行线的性质,得,根据三角形的内角和定理,得,再根据等角对等边,得根据两组对边分别平行,知四边形ABED是平行四边形,则,从而求解.
    【详解】
    ,,

    又,


    ,,
    四边形ABED是平行四边形.


    故选:A.
    此题综合运用了平行四边形的判定及性质、平行线的性质、等角对等边的性质.
    2、C
    【解析】
    确定事件就是一定发生或一定不发生的事件,根据定义即可作出判断
    【详解】
    解:①上海明天是晴天,是随机事件;
    ②铅球浮在水面上,是不可能事件,属于确定事件;
    ③平面中,多边形的外角和都等于360度,是必然事件,属于确定事件;
    故选:C.
    此题考查随机事件,解题关键在于根据定义进行判断
    3、B
    【解析】
    结合轴对称图形的概念进行求解即可.
    【详解】
    解:根据轴对称图形的概念可知:
    A、不是轴对称图形,故本选项错误;
    B、是轴对称图形,故本选项错误;
    C、不是轴对称图形,故本选项错误;
    D、不是轴对称图形,故本选项正确.
    故选B.
    本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    4、D
    【解析】
    根据一次函数的性质即可求出m的取值范围.
    【详解】
    ∵一次函数的图象经过第二、三、四象限,
    ∴ ,
    ∴m<1.
    故选:D
    本题考查一次函数,解题的关键是熟练运用一次函数的性质,本题属于基础题型.
    5、D
    【解析】
    根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;根据角的和差关系求得∠GAF=45°;在直角△ECG中,根据勾股定理可证CE=2DE;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;求出S△ECG,由S△FCG=即可得出结论.
    【详解】
    ①正确.理由:
    ∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);
    ②正确.理由:
    ∵∠BAG=∠FAG,∠DAE=∠FAE.
    又∵∠BAD=90°,∴∠EAG=45°;
    ③正确.理由:
    设DE=x,则EF=x,EC=12-x.在直角△ECG中,根据勾股定理,得:(12﹣x)2+62=(x+6)2,解得:x=4,∴DE=x=4,CE=12-x=8,∴CE=2DE;
    ④正确.理由:
    ∵CG=BG,BG=GF,∴CG=GF,∴∠GFC=∠GCF.
    又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;
    ⑤正确.理由:
    ∵S△ECG=GC•CE=×6×8=1.
    ∵S△FCG===.
    故选D.
    本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想与方程思想的应用.
    6、B
    【解析】
    原式第一项利用绝对值定义计算,第二项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果.
    【详解】
    原式=4+1-4=1
    故选B
    此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
    7、D
    【解析】
    根据注水后水进入水池情况,结合特殊点的实际意义即可求出答案.
    【详解】
    解:该蓄水池就是一个连通器.开始时注入甲池,乙池无水,
    当甲池中水位到达与乙池的连接处时,乙池才开始注水,所以A、B不正确,
    此时甲池水位不变,所有水注入乙池,所以水位上升快.
    当乙池水位到达连接处时,所注入的水使甲乙两个水池同时升高,所以升高速度变慢.
    在乙池水位超过连通部分,甲和乙部分同时升高,但蓄水池底变小,此时比连通部分快. 故选:D.
    主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
    8、C
    【解析】
    通过构造相似三角形即可解答.
    【详解】
    解:根据题意可得在△ABC中△ABC∽△MNC,
    又因为M.N是AC,BC的中点,
    所以相似比为2:1,MN//AB,B正确, CM=AC,D正确.
    即AB=2MN=36,A正确;
    MN=AB,C错误.
    故本题选C.
    本题考查相似三角形的判定与运用,熟悉掌握是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、2
    【解析】
    先套用平方差公式,再根据二次根式的性质计算可得.
    【详解】
    原式=()2﹣()2=5﹣3=2,
    考点:二次根式的混合运算
    10、>
    【解析】
    观察x=3的图象的位置,即可解决问题.
    【详解】
    解:观察图象可知,x=3时,反比例函数图象在一次函数的图象的上面,所以y1>y1.
    故答案为:>.
    本题考查反比例函数与一次函数的交点问题,正确认识图形是解题的关键,学会利用图象由自变量的取值确定函数值的大小,属于中考常考题型.
    11、y=﹣2x﹣1
    【解析】
    因为平行,所以得到两个函数的k值相同,再根据截距是-1,可得b=-1,即可求解.
    【详解】
    ∵直线l与直线y=3﹣2x平行,
    ∴设直线l的解析式为:y=﹣2x+b,
    ∵在y轴上的截距是﹣1,
    ∴b=﹣1,
    ∴y=﹣2x﹣1,
    ∴直线l的表达式为:y=﹣2x﹣1.
    故答案为:y=﹣2x﹣1.
    该题主要考查了一次函数图像平移的问题,
    12、1或.
    【解析】
    分两种情形①CG=CB,②GC=GB,分别求解即可解决问题.
    【详解】
    在菱形ABCD中,∵∠A=60°,AD=,
    ∴AC=3,
    ①当CG=BC=时,AG=AC=CG=3-,
    ∴AP=AG=.
    ②当GC=GB时,易知GC=1,AG=2,
    ∴AP=AG=1,
    故答案为1或.
    本题考查翻折变换、等腰三角形的性质、勾股定理、菱形的性质等知识,解题的关键是学会用分类讨论的思想思考问题
    13、3
    【解析】
    根据分式为0的条件解答即可,
    【详解】
    因为分式的值为0,
    所以∣x∣-3=0且3+x≠0,
    ∣x∣-3=0,即x=3,
    3+x≠0,即x≠-3,
    所以x=3,
    故答案为:3
    本题考查分式值为0的条件:分式的分子为0,且分母不为0,熟练掌握分式值为0的条件是解题关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)10;30;(2);(3)135米.
    【解析】
    (1)甲的速度=(300-100)÷20=10,根据图象知道一分的时间,走了15米,然后即可求出A地提速时距地面的高度;
    (2)根据甲登山的速度以及图象直接写出甲距地面高度y(米)和x(分)之间的函数关系式;
    (3)求出乙提速后y和x之间的函数关系式,再与(2)联立组成方程组解答即可.
    【详解】
    解:(1)甲的速度为:米分,
    根据图中信息知道乙一分的时间,走了15米,
    那么2分时,将走30米;
    故答案为:10;30;
    (2);
    (3)乙提速后速度为:(米秒),
    由,得,
    设乙提速后与的函数关系是,
    把,代入得,
    解得,
    乙提速后与的函数关系是,
    由,
    解得,
    (米,
    答:登山6.5分钟时,乙追上了甲,此时乙距地的高度为135米.
    本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,关键是正确理解题意.
    15、(1)m≠-1;(1)y=-x1+5x-6;(3)点P(,-)或(1,0).
    【解析】
    (1)由于抛物线与x轴有两个不同的交点,可令y=0,则所得方程的根的判别式△>0,可据此求出m的取值范围.
    (1)根据已知直线的解析式,可得到D点的坐标;根据抛物线的解析式,可用m表示出A、B的坐标,即可得到AD、BD的长,代入AD×BD=5,即可求得m的值,从而确定抛物线的解析式.
    (3)直线PA分△ACD的面积为1:4两部分,即DH:HC=1:4或4:1,则点H(0,-1)或(0,-5),即可求解.
    【详解】
    解:(1)∵抛物线与x轴有两个不同的交点,
    ∴△=(m-4)1+11(m-1)=m1+4m+4=(m+1)1>0,
    ∴m≠-1.
    (1)∵y=-x1-(m-4)x+3(m-1)=-(x-3)(x+m-1),
    ∴抛物线与x轴的两个交点为:(3,0),(1-m,0);
    则:D(0,-1),
    则有:AD×BD=,
    解得:m=1(舍去)或-1,
    ∴m=-1,
    抛物线的表达式为:y=-x1+5x-6①;
    (3)存在,理由:
    如图所示,点C(0,-6),点D(0,-1),点A(1,0),
    直线PA分△ACD的面积为1:4两部分,
    即DH:HC=1:4或4:1,则点H(0,-1)或(0,-5),
    将点H、A的坐标代入一次函数表达式并解得:
    直线HA的表达式为:y=x-1或y=x-5②,
    联立①②并解得:x=或1,
    故点P(,-)或(1,0).
    本题考查的是二次函数综合运用,涉及到一次函数、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.
    16、(1)2 (2)证明见解析
    【解析】
    试题分析:(1)如图1,连接对角线BD,先证明△ABD是等边三角形,根据E是AB的中点,由等腰三角形三线合一得:DE⊥AB,利用勾股定理依次求DE和EC的长;
    (2)如图2,作辅助线,构建全等三角形,先证明△ADH是等边三角形,再由△AMN是等边三角形,得条件证明△ANH≌△AMD(SAS),则HN=DM,根据DQ是△CHN的中位线,得HN=2DQ,由等量代换可得结论.
    试题解析:解:(1)如图1,连接BD,则BD平分∠ABC,∵四边形ABCD是菱形,∴AD∥BC,∴∠A+∠ABC=180°,∵∠A=60°,∴∠ABC=120°,∴∠ABD=∠ABC=60°,∴△ABD是等边三角形,∴BD=AD=4,∵E是AB的中点,∴DE⊥AB,由勾股定理得:DE==,∵DC∥AB,∴∠EDC=∠DEA=90°,在Rt△DEC中,DC=4,EC===;
    (2)如图2,延长CD至H,使CD=DH,连接NH、AH,∵AD=CD,∴AD=DH,∵CD∥AB,∴∠HDA=∠BAD=60°,∴△ADH是等边三角形,∴AH=AD,∠HAD=60°,∵△AMN是等边三角形,∴AM=AN,∠NAM=60°,∴∠HAN+∠NAG=∠NAG+∠DAM,∴∠HAN=∠DAM,在△ANH和△AMD中,∵AH=AD,∠HAN=∠DAM,AN=AM,∴△ANH≌△AMD(SAS),∴HN=DM,∵D是CH的中点,Q是NC的中点,∴DQ是△CHN的中位线,∴HN=2DQ,∴DM=2DQ.
    点睛:本题考查了菱形的性质、三角形的中位线、三角形全等的性质和判定、等边三角形的性质和判定,本题证明△ANH≌△AMD是关键,并与三角形中位线相结合,解决问题;第二问有难度,注意辅助线的构建.
    17、(1);(2)他这个月销售了120件产品;(3)要使月工资超过4200元,该月的销售量应当超过180件.
    【解析】
    (1)根据销售员的奖励工资由两部分组成,即可得到y与x之间的函数关系式;
    (2)根据销售员某月工资为3600元,列方程求解即可;
    (3)根据月工资超过4200元,列不等式求解即可.
    【详解】
    (1)由题可得,与之间的函数关系式是:
    (2)令,则,
    解得:,
    ∴他这个月销售了120件产品;
    (3)由得,
    ∴要使月工资超过4200元,该月的销售量应当超过180件
    此题考查了一次函数的应用,关键是读懂题意得出y与x之间的函数关系式,进而利用等量关系以及不等量关系分别求解.
    18、.
    【解析】
    首先将原分式化简,然后根据分式有意义的条件,求得的取值范围,再取值求解即可.
    【详解】
    解:原式,
    的取值有
    且且

    当时,原式.
    本题考查分式的化简求值,做题时应注意在给定的范围内取值,难度中等.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、3
    【解析】
    由题意可知:中间小正方形的边长为:a-b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.
    【详解】
    由题意可知:中间小正方形的边长为:a-b,
    ∵每一个直角三角形的面积为:ab=×8=4,
    ∴4×ab+(a-b)2=25,
    ∴(a−b)2=25-16=9,
    ∴a-b=3,
    故答案为3.
    本题考查了勾股定理的证明,熟练掌握该知识点是本题解题的关键.
    20、1
    【解析】
    证明△ABQ≌△EBQ,根据全等三角形的性质得到BE=AB=5,AQ=QE,根据三角形中位线定理计算即可.
    【详解】
    解:在△ABQ和△EBQ中,

    ∴△ABQ≌△EBQ(ASA),
    ∴BE=AB=5,AQ=QE,
    同理CD=AC=7,AP=PD,
    ∴DE=CD-CE=CD-(BC-BE)=2,
    ∵AP=PD,AQ=QE,
    ∴PQ=DE=1,
    故答案为:1.
    本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    21、(2,﹣3)
    【解析】
    试题分析:反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.
    解:根据题意,知
    点A与B关于原点对称,
    ∵点A的坐标是(﹣2,3),
    ∴B点的坐标为(2,﹣3).
    故答案是:(2,﹣3).
    点评:本题考查了反比例函数图象的中心对称性,关于原点对称的两点的横、纵坐标分别互为相反数.
    22、x≥1
    【解析】
    根据被开方数大于等于0列式计算即可得解.
    【详解】
    由题意得,x−1⩾0,
    解得x⩾1.
    故答案为:x⩾1.
    此题考查二次根式有意义的条件,解题关键在于掌握被开方数大于等于0
    23、
    【解析】
    在一次函数y=x+4中,分别令x=0, y=0,解相应方程,可求得A、B两点的坐标,由矩形的性质可知EF=OP,可知当OP最小时,则EF有最小值,由垂线段最短可知当OP⊥AB时,满足条件,根据直角三角形面积的不同表示方法可求得OP的长,即可求得EF的最小值.
    【详解】
    解:∵一次函数y=x+4中,令x=0,则y=4,令y=0,则x=-3,
    ∴A(0,4),B(-3,0),
    ∵PE⊥y轴于点E,PF⊥x轴于点F,
    ∴四边形PEOF是矩形,且EF=OP,
    ∵O为定点,P在线段上AB运动,
    ∴当OP⊥AB时,OP取得最小值,此时EF最小,
    ∵A(0,4),点B坐标为(-3,0),
    ∴OA=4,O B=3,
    由勾股定理得:AB==5,
    ∵AB·OP=AO·BO=2S△OAB,
    ∴OP=,
    故答案为:.
    本题考查了一次函数图象上点的坐标特点,勾股定理、矩形的判定与性质、最值问题等,熟练掌握相关知识、确定出OP的最小值是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、 (1);(2) 147元.
    【解析】
    (1)设每个文具盒x元,每支钢笔y元,由题意得:
    ,解之得:.
    (2)由题意得:w=14x+15(10-x)=150-x,
    ∵w随x增大而减小,,
    ∴当x=3时,
    W最大值=150-3=147,即最多花147元.
    25、 (1)MN=2+;(2)y=•x•2x(0<x<4);(3)1或1.
    【解析】
    (1)解直角三角形求出AD,利用梯形中位线定理即可解决问题;
    (2)求出AD,利用梯形的面积公式计算即可;
    (3)作AG⊥BC于G,EH⊥BC于H.想办法证明△ABC≌△ECB,推出AC=BE=4,因为AC⊥BE,可得S四边形ABCE=•AC•BE,由此计算即可;
    【详解】
    (1)∵AD∥BC,
    ∴∠DAC=∠ACB=30°,
    在Rt△ACD中,∵AC=4,∠D=90°,∠ACD=30°,
    ∴CD=AC=2,AD=CD=2,
    ∵AM=BM,DN=CN,
    ∴MN是梯形ABCD的中位线,
    ∴MN=(AD+BC)=2+.
    (2)在Rt△ACD中,∵AC=4,∠D=90°,CD=x,
    ∴AD==,
    ∴y=•(AD+BC)•CD=(+4)x=•x•+2x(0<x<4).
    (3)①当点E在线段AD上时,作AG⊥BC于G,EH⊥BC于H.
    ∵AD∥BC,AG⊥BC于G,EH⊥BC于H.
    ∴AG=EH,∠AGB=∠EHC=90°,
    ∵AB=EC,
    ∴Rt△ABG≌Rt△ECH,
    ∴∠ABC=∠ECB,
    ∵AB=EC,BC=CB,
    ∴△ABC≌△ECB,
    ∴AC=BE=4,
    ∵AC⊥BE,
    ∴S四边形ABCE=•AC•BE=×4×4=1.
    ②当点E在AD的延长线上时,易证四边形ABCE是平行四边形,
    ∵BE⊥AC,
    ∴四边形ABCE是菱形,
    ∵BC=AC=AB,
    ∴△ABC,△ACE是等边三角形,
    ∴S四边形ABCE=2××42=1.
    本题考查四边形综合题、勾股定理、梯形的中位线定理、梯形的面积、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
    26、(1)菱形;(2)筝形是轴对称图形;筝形的对角线互相垂直;筝形的一组对角相等.证明见解析;(3)4.
    【解析】
    (1)根据筝形的定义解答即可;
    (2)根据全等三角形的判定和性质证明;
    (3)连接AC,作CE⊥AB交AB的延长线于E,根据正弦的定义求出CE,根据三角形的面积公式计算即可.
    【详解】
    (1)∵菱形的四条边相等,
    ∴菱形是筝形,
    故答案为:菱形;
    (2)筝形是轴对称图形;筝形的对角线互相垂直;筝形的一组对角相等.
    已知:四边形ABCD是筝形,
    求证:∠B=∠D,
    证明:如图1,连接AC,
    在△ABC和△ADC中,

    ∴△ABC≌△ADC,
    ∴∠B=∠D;
    (3)如图2,连接AC,作CE⊥AB交AB的延长线于E,
    ∵∠ABC=120°,
    ∴∠EBC=60°,又BC=2,
    ∴CE=BC×sin∠EBC=,
    ∴S△ABC=×AB×CE=2,
    ∵△ABC≌△ADC,
    ∴筝形ABCD的面积=2S△ABC=4.
    本题考查的是筝形的定义和性质、菱形的性质、全等三角形的判定和性质,正确理解筝形的性质、熟记锐角三角函数的定义是解题的关键.
    题号





    总分
    得分
    批阅人

    相关试卷

    2025届辽宁省抚顺市名校数学九上开学调研试题【含答案】:

    这是一份2025届辽宁省抚顺市名校数学九上开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年辽宁省抚顺市顺城区数学九上开学考试试题【含答案】:

    这是一份2024年辽宁省抚顺市顺城区数学九上开学考试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年辽宁抚顺新抚区数学九上开学检测试题【含答案】:

    这是一份2024年辽宁抚顺新抚区数学九上开学检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map