2025届江苏省南通通州区九上数学开学联考模拟试题【含答案】
展开
这是一份2025届江苏省南通通州区九上数学开学联考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)的算术平方根是( )
A.B.﹣C.D.±
2、(4分)三角形的三边长分别为6,8,10,它的最短边上的高为( )
A.6 B.4.5 C.2.4 D.8
3、(4分)用配方法解方程变形后为
A.B.
C.D.
4、(4分)如图,将△ABC绕点A逆时针旋转110°,得到△ADE,若点D落在线段BC的延长线上,则∠B大小为( )
A.30°B.35°C.40°D.45°
5、(4分)一个矩形的两条对角线的夹角为 60°,且对角线的长度为 8cm,则较短边的长度为( )
A.B.C.D.
6、(4分)下列从左到右的变形,属于因式分解的是( )
A.B.
C.D.
7、(4分)小明做了四道题:;;;;做对的有( )
A.B.C.D.
8、(4分)下列式子一定是二次根式的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知在△ABC中,AB=AC.以AB为直径作半圆O,交BC于点D. 若∠BAC=40°,则AD弧的度数是___度.
10、(4分)二次函数的图象的顶点是__________.
11、(4分)数据,,,,,的方差_________________
12、(4分)直角三角形的两边为3和4,则该三角形的第三边为__________.
13、(4分)已知一个样本的数据为1、2、3、4、x,它的平均数是3,则这个样本方差=_______
三、解答题(本大题共5个小题,共48分)
14、(12分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数(度)是镜片焦距(厘米)()的反比例函数,调查数据如下表:
(1)求与的函数表达式;
(2)若小明所戴近视眼镜镜片的度数为度,求该镜片的焦距.
15、(8分)如图,在▱ABCD中,各内角的平分线分别相交于点E,F,G,H.
(1)求证:△ABG≌△CDE;
(2)猜一猜:四边形EFGH是什么样的特殊四边形?证明你的猜想;
(3)若AB=6,BC=4,∠DAB=60°,求四边形EFGH的面积.
16、(8分)如图,已知线段AC、BC,利用尺规作一点O,使得点O到点A、B、C的距离均相等.(保留作图痕迹,不写作法)
17、(10分)如图所示,在第四象限内的矩形OABC,两边在坐标轴上,一个顶点在一次函数y=0.5x﹣3的图象上,当点A从左向右移动时,矩形的周长与面积也随之发生变化,设线段OA的长为m,矩形的周长为C,面积为S.
(1)试分别写出C、S与m的函数解析式,它们是否为一次函数?
(2)能否求出当m取何值时,矩形的周长最大?为什么?
18、(10分)如图,已知点E,C在线段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.
(1)求证:△ABC≌△DEF;
(2)求证:四边形ACFD为平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在数轴上点A表示的实数是_____________.
20、(4分)将直线向上平移个单位后,可得到直线_______.
21、(4分)如图,在等腰梯形 ABCD 中,AD∥BC,AB=CD.点 P 为底边 BC 的延长线上任意一点,PE⊥AB 于 E,PF⊥DC 于 F,BM⊥DC 于 M.请你探究线段 PE、PF、BM 之间的数量关系:
______.
22、(4分)两人从同一地点同时出发,一人以30m/min的速度向北直行,一人以30m/min的速度向东直行,10min后他们相距__________m
23、(4分)如图,在直角坐标系中,正方形OABC顶点B的坐标为(6,6),直线CD交直线OA于点D,直线OE交线段AB于点E,且CD⊥OE,垂足为点F,若图中阴影部分的面积是正方形OABC的面积的,则△OFC的周长为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产、两种产品共50件.已知生产一件种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件种产品需用甲种原料4千克、乙种原料10千克,可获利润1200元.设生产种产品的件数为(件),生产、两种产品所获总利润为(元)
(1)试写出与之间的函数关系式:
(2)求出自变量的取值范围;
(3)利用函数的性质说明哪种生产方案获总利润最大?最大利润是多少?
25、(10分)如图,,平分交于点,于点,交于点,连接,求证:四边形是菱形.
26、(12分)已知:如图,菱形ABCD的对角线AC,BD相交于O,点E,F分别是AD,DC的中点,已知OE=,EF=3,求菱形ABCD的周长和面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
直接利用算术平方根的定义得出答案.
【详解】
的算术平方根是:.
故选C.
此题主要考查了算术平方根,正确把握定义是解题关键.
2、D
【解析】
本题考查了直角三角形的判定即勾股定理的逆定理和直角三角形的性质
由勾股定理的逆定理判定该三角形为直角三角形,然后由直角三角形的定义解答出最短边上的高.
由题意知,,所以根据勾股定理的逆定理,三角形为直角三角形.长为6的边是最短边,它上的高为另一直角边的长为1.故选D.
3、A
【解析】
在本题中,把常数项-2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.
【详解】
把方程x2-4x-2=0的常数项移到等号的右边,得到x2-4x=2,方程两边同时加上一次项系数一半的平方,得到x2-4x+4=2+4,配方得(x-2)2=1.
故选A
配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
4、B
【解析】
由旋转性质等到△ABD为等腰三角形,利用内角和180°即可解题.
【详解】
解:由旋转可知,∠BAD=110°,AB=AD
∴∠B=∠ADB,
∠B=(180°-110°)2=35°,
故选B.
本题考查了等腰三角形的性质,三角形的内角和,属于简单题,熟悉旋转的性质是解题关键.
5、C
【解析】
根据矩形的性质得到△AOB是等边三角形,即可得到答案.
【详解】
如图,由题意知:∠AOB= 60°,AC=BD=8cm,
∵四边形ABCD是矩形,
∴AO=AC=BD=OB=4cm,
∴△AOB是等边三角形,
∴AB=OA=4cm,
故选:C.
此题考查矩形的性质,等边三角形的判定及性质,正确掌握矩形的性质是解题的关键.
6、D
【解析】
A.从左到右的变形是整式乘法,不是因式分解;
B.右边不是整式积的形式,不是因式分解;
C.分解时右边括号中少了一项,故不正确,不符合题意;
D. 是因式分解,符合题意,
故选D.
本题考查了因式分解的意义,熟练掌握因式分解的定义是解本题的关键.
7、D
【解析】
根据无理数的运算法则,逐一计算即可.
【详解】
,正确;
,错误;
,错误;
,正确;
故答案为D.
此题主要考查无理数的运算,熟练掌握,即可解题.
8、C
【解析】
根据二次根式的定义:形如(a≥0)的式子叫做二次根式,逐一判断即可.
【详解】
解:A.当x=0时, 不是二次根式,故本选项不符合题意;
B. 当x=-1时,不是二次根式,故本选项不符合题意;
C. 无论x取何值,,一定是二次根式,故本选项符合题意;
D. 当x=0时,不是二次根式,故本选项不符合题意.
故选C.
此题考查的是二次根式的判断,掌握二次根式的定义是解决此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、140
【解析】
首先连接AD,由等腰△ABC中,AB=AC,以AB为直径的半圆交BC于点D,可得∠BAD=∠CAD=20°,即可得∠ABD=70°,继而求得∠AOD的度数,则可求得AD弧的度数.
【详解】
连接AD、OD,
∵AB为直径,
∴∠ADB=90°,
即AD⊥BC,
∵AB=AC,
∴∠BAD=∠CAD=∠BAC=20°,BD=DC,
∴∠ABD=70°,
∴∠AOD=140°
∴AD弧的度数为140°;故答案为140.
本题考查等腰三角形的性质和圆周角定理,解题的关键是掌握等腰三角形的性质和圆周角定理.
10、
【解析】
根据二次函数的解析式,直接即可写出二次函数的的顶点坐标.
【详解】
根据二次函数的解析式可得二次函数的顶点为:(5,8).
故答案为(5,8)
本题主要考查二次函数的顶点坐标的计算,关键在于利用配方法构造完全平方式,注意括号内是减号.
11、;
【解析】
首先计算平均数,再利用方差的公式计算即可.
【详解】
根据题意可得平均数
所以
故答案为1
本题主要考查方差的计算公式,应当熟练掌握,这是数据统计里一个比较重要的概念.
12、5或
【解析】
本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.
【详解】
解:设第三边为,
(1)若4是直角边,则第三边是斜边,由勾股定理得:
,所以;
(2)若4是斜边,则第三边为直角边,由勾股定理得:
,所以;
所以第三边的长为5或.
故答案为:5或.
本题考查勾股定理,解题的关键是熟练掌握勾股定理,并且分情况讨论.
13、2
【解析】
已知该样本有5个数据.故总数=3×5=15,则x=15-1-2-3-4=5,
则该样本方差=.
本题难度较低,主要考查学生对简单统计中平均数与方差知识点的掌握,计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.
三、解答题(本大题共5个小题,共48分)
14、(1),;(2)该镜片的焦距为.
【解析】
(1)根据图表可以得到眼镜片的度数与焦距的积是一个常数,因而眼镜片度数与镜片焦距成反比例函数关系,即可求解;
(2)在解析式中,令y=500,求出x的值即可.
【详解】
(1)根据题意,设与的函数表达式为
把,代入中,得
∴与的函数表达式为.
(2)当时,
答:该镜片的焦距为.
考查了反比例函数的应用,正确理解反比例函数的特点,两个变量的乘积是常数,是解决本题的关键.
15、(1)证明见解析;(2)矩形;(3).
【解析】
试题分析:(1)根据角平分线的定义以及平行四边形的性质,即可得到AB=CD,∠BAG=∠DCE,∠ABG=∠CDE,进而判定△ABG≌△CDE;
(2)根据角平分线的定义以及平行四边形的性质,即可得出∠AGB=90°,∠DEC=90°,∠AHD=90°=∠EHG,进而判定四边形EFGH是矩形;
(3)根据含30°角的直角三角形的性质,得到BG,AG,BF,CF,进而得出EF和GF的长,可得四边形EFGH的面积.
试题解析:解:(1)∵GA平分∠BAD,EC平分∠BCD,∴∠BAG=∠BAD,∠DCE=∠DCB,∵▱ABCD中,∠BAD=∠DCB,AB=CD,∴∠BAG=∠DCE,同理可得,∠ABG=∠CDE,在△ABG和△CDE中,∵∠BAG=∠DCE,AB=CD,∠ABG=∠CDE,∴△ABG≌△CDE(ASA);
(2)四边形EFGH是矩形.
证明:∵GA平分∠BAD,GB平分∠ABC,∴∠GAB=∠BAD,∠GBA=∠ABC,∵▱ABCD中,∠DAB+∠ABC=180°,∴∠GAB+∠GBA=(∠DAB+∠ABC)=90°,即∠AGB=90°,同理可得,∠DEC=90°,∠AHD=90°=∠EHG,∴四边形EFGH是矩形;
(3)依题意得,∠BAG=∠BAD=30°,∵AB=6,∴BG=AB=3,AG==CE,∵BC=4,∠BCF=∠BCD=30°,∴BF=BC=2,CF=,∴EF=﹣=,GF=3﹣2=1,∴矩形EFGH的面积=EF×GF=.
点睛:本题主要考查了平行四边形的性质,矩形的判定以及全等三角形的判定与性质的运用,解题时注意:有三个角是直角的四边形是矩形.在判定三角形全等时,关键是选择恰当的判定条件.
16、见解析.
【解析】
作BC,AC的垂直平分线,它们的交点O到点A、B、C的距离均相等.
【详解】
如图所示,点O即为所求.
本题主要考查了复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
17、(1)C=m+6,面积S=﹣0.5m2+3m, C是m的一次函数,S不是m的一次函数;(2)不能求出当m取何值时,矩形的周长最大.
【解析】
(1)由题意可知A(m,0),B(m,0.5m﹣3),从而得AB=3﹣0.5m,继而根据矩形的周长公式和面积公式进行求解可得相应的函数解析式,然后再根据一次函数的概念进行判断即可;
(2)先确定出m的取值范围为0<m<6,根据(1)中的周长,可知m越大周长越大,但m没有是大值,因此不能求出当m取何值时,矩形的周长最大.
【详解】
(1)由题意,可知A(m,0),B(m,0.5m﹣3),
则AB=|0.5m﹣3|=3﹣0.5m,
∴矩形的周长C=2(OA+AB)=2(m+3﹣0.5m)=m+6,
面积S=OA•AB=m(3﹣0.5m)=﹣0.5m2+3m,
∴C是m的一次函数,S不是m的一次函数;
(2)不能求出当m取何值时,矩形的周长最大.
∵矩形OABC在第四象限内,
∴,
∴0<m<6,
又C=m+6,
∴不能求出当m取何值时,矩形的周长最大.
本题考查了一次函数的应用——几何问题,熟练掌握矩形的周长公式以及面积公式是解题的关键.
18、(1)证明见解析;(2)证明见解析.
【解析】
试题分析: (1)根据平行线得出∠B=∠DEF,求出BC=EF,根据ASA推出两三角形全等即可;(2)根据全等得出AC=DF,推出AC∥DF,得出平行四边形ACFD,推出AD∥CF,MAD=CF,推出AD=CE,AD∥CE,根据平行四边形的判定推出即可.
试题解析:
(1)证明:∵AB∥DE,
∴∠B=∠DEF,
∵BE=EC=CF,
∴BC=EF,
在△ABC和△DEF中
∴△ABC≌△DEF.
(2)证明:∵△ABC≌△DEF,
∴AC=DF,
∵∠ACB=∠F,
∴AC∥DF,
∴四边形ACFD是平行四边形,
∴AD∥CF,AD=CF,
∵EC=CF,
∴AD∥EC,AD=CE,
∴四边形AECD是平行四边形.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
如图在直角三角形中的斜边长为,因为斜边长即为半径长,且OA为半径,所以OA=,即A表示的实数是.
【详解】
由题意得,
OA=,
∵点A在原点的左边,
∴点A表示的实数是-.
故答案为-.
本题考查了勾股定理,实数与数轴的关系,根据勾股定理求出线段OA的长是解答本题的关键.
20、
【解析】
根据“上加下减”原则进行解答即可.
【详解】
由“上加下减”原则可知,将直线向上平移个单位,得到直线的解析式为:,即
故答案为:
本题考查一次函数平移问题,根据“上加下减”原则进行解答即可.
21、PE-PF=BM.
【解析】
过点B作BH∥CD,交PF的延长线于点H,易证四边形BMFH是平行四边形,于是有FH=BM,再用AAS证明△PBE≌△PBH,可得PH=PE,继而得到结论.
【详解】
解:PE-PF=BM. 理由如下:
过点B作BH∥CD,交PF的延长线于点H,如图
∴∠PBH=∠DCB,
∵PF⊥CD,BM⊥CD,
∴BM∥FH,PH⊥BH,
∴四边形BMFH是平行四边形,∠H=90°,
∴FH=BM,
∵等腰梯形ABCD中,AD∥BC,AB=DC,
∴∠ABC=∠DCB,
∴∠ABC=∠PBH,
∵PE⊥AB,
∴∠PEB=∠H=90°,又PB为公共边,
∴△PBE≌△PBH(AAS),
∴PH=PE,
∴PE=PF+FH=PF+BM.
即PE-PF=BM.
本题考查了等腰梯形的性质、平行四边形的判定与性质和全等三角形的判定与性质,解题的关键是正确添加辅助线,构造所需的平行四边形和全等三角形.
22、
【解析】
两人从同一地点同时出发,一人以30m/min的速度向北直行
【详解】
解:设10min后,OA=30×10=300(m),
OB=30×10=300(m),
甲乙两人相距AB=(m).
故答案为:.
本题考查的是勾股定理的应用,根据题意判断直角三角形是解答此题的关键.
23、3+2
【解析】
证明△COD≌△OAE,推理出△OCF面积=四边形FDAE面积=2÷2=3,设OF=x,FC=y,则xy=2,x2+y2=1,所以(x+y)2=x2+y2+2xy=30,从而可得x+y的值,则△OFC周长可求.
【详解】
∵正方形OABC顶点B的坐标为(3,3),
∴正方形的面积为1.
所以阴影部分面积为1×=2.
∵四边形AOCB是正方形,
∴∠AOC=90°,即∠COE+∠AOE=90°,
又∵CD⊥OE,
∴∠CFO=90°
∴∠OCF+∠COF=90°,
∴∠OCD=∠AOE
在△COD和△OAE中
∴△COD≌△OAE(AAS).
∴△COD面积=△OAE面积.
∴△OCF面积=四边形FDAE面积=2÷2=3.
设OF=x,FC=y,
则xy=2,x2+y2=1,
所以(x+y)2=x2+y2+2xy=30.
所以x+y=2.
所以△OFC的周长为3+2.
故答案为3+2.
本题主要考查了正方形的性质、全等三角形的判定和性质,解题的关键是推理出两个阴影部分面积相等,得到△OFC两直角边的平方和、乘积,运用完全平方公式求解出OF+FC值.
二、解答题(本大题共3个小题,共30分)
24、(1)y与x之间的函数关系式是;
(2)自变量x的取值范围是x = 30,31,1;
(3)生产A种产品 30件时总利润最大,最大利润是2元,
【解析】
(1)由于用这两种原料生产A、B两种产品共50件,设生产A种产品x件,那么生产B种产品(50-x)件.由A产品每件获利700元,B产品每件获利1200元,根据总利润=700×A种产品数量+1200×B种产品数量即可得到y与x之间的函数关系式;
(2)关系式为:A种产品需要甲种原料数量+B种产品需要甲种原料数量≤360;A种产品需要乙种原料数量+B种产品需要乙种原料数量≤290,把相关数值代入得到不等式组,解不等式组即可得到自变量x的取值范围;
(3)根据(1)中所求的y与x之间的函数关系式,利用一次函数的增减性和(2)得到的取值范围即可求得最大利润.
解答:解:(1)设生产A种产品x件,则生产B种产品(50-x)件,
由题意得:y=700x+1200(50-x)=-500x+60000,
即y与x之间的函数关系式为y=-500x+60000;
(2)由题意得,
解得30≤x≤1.
∵x为整数,
∴整数x=30,31或1;
(3)∵y=-500x+60000,-500<0,
∴y随x的增大而减小,
∵x=30,31或1,
∴当x=30时,y有最大值为-500×30+60000=2.
即生产A种产品30件,B种产品20件时,总利润最大,最大利润是2元.
“点睛”本题考查一次函数的应用,一元一次不等式组的应用及最大利润问题;得到两种原料的关系式及总利润的等量关系是解决本题的关键.
25、见解析
【解析】
根据题意首先利用ASA证明,再得出四边形是平行四边形,再利用四边相等来证明四边形是菱形即可.
【详解】
证明:∵,
∴,
∵平分交于点,
∴,
∴,
∴,
∵,
∴,
在和中
,,,
∴,
∴,
∴四边形是平行四边形,
∵,
∴四边形是菱形
此题考查全等三角形的判定与性质,平行四边形的判定,菱形的判定,解题关键在于利用平行线的性质来求证.
26、20,1
【解析】
首先由菱形ABCD的对角线AC,BD相交于O,点E,F分别是AD,DC的中点,根据直角三角形斜边上的中线等于斜边的一半,可求得AD的长,由三角形中位线定理可求得AC的长,进而可求出菱形的周长,再求出BD的长即可求出菱形的面积.
【详解】
∵菱形ABCD的对角线AC,BD相交于点O,∴AC⊥BD,OA=OC,OB=OD,
∵点E,F分别是AD,DC的中点,∴OE=AD,EF=AC,
∵OE=2.5,EF=3,∴AD=5,AC=6,∴菱形ABCD的周长为:4×5=20;
∵AO=AC=3,AD=5,∴DO==4,∴BD=2DO=8,∴菱形ABCD的面积=AC•BD=1.
本题考查了菱形的性质、三角形中位线的性质、勾股定理以及直角三角形的性质.注意根据题意求得AC与AD的长是解答此题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
眼镜片度数(度)
…
镜片焦距(厘米)
…
相关试卷
这是一份2025届江苏省南通市田家炳中学数学九上开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省南通市港闸区南通市北城中学九上数学开学质量跟踪监视模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省南通市港闸区数学九上开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。