2025届江苏省海门六校联考数学九上开学学业质量监测模拟试题【含答案】
展开
这是一份2025届江苏省海门六校联考数学九上开学学业质量监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列事件为必然事件的是( )
A.抛掷一枚硬币,落地后正面朝上
B.篮球运动员投篮,投进篮筐;
C.自然状态下水从高处流向低处;
D.打开电视机,正在播放新闻.
2、(4分)把中根号外的(a-1)移入根号内,结果是( )
A.B.C.D.
3、(4分)在平面直角坐标系中,点)平移后能与原来的位置关于轴对称,则应把点( )
A.向右平移个单位B.向左平移个单位
C.向右平移个单位D.向左平移个单位
4、(4分)直角坐标系中,A、B两点的横坐标相同但均不为零,则直线AB( )
A.平行于x轴B.平行于y轴C.经过原点D.以上都不对
5、(4分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是 ( )
A.1B.1.5C.2D.2.5
6、(4分)一个多边形的内角和是1260°,这个多边形的边数是( )
A.6B.7C.8D.9
7、(4分)下列说法正确的是( ).
A.掷一颗骰子,点数一定小于等于6;
B.抛一枚硬币,反面一定朝上;
C.为了解一种灯泡的使用寿命,宜采用普查的方法;
D.“明天的降水概率为90%”,表示明天会有90%的地方下雨.
8、(4分)新定义,若关于x的一元二次方程:与,称为“同族二次方程”.如与是“同族二次方程”.现有关于x的一元二次方程:与是“同族二次方程”.那么代数式能取的最小值是( )
A.2011B.2013C.2018D.2023
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)八年级(1)班安排了甲、乙、丙、丁四名同学参加4×100米接力赛,打算抽签决定四人的比赛顺序,则甲跑第一棒的概率为______.
10、(4分)已知一次函数的图象过点(3,5)与点(-4,-9),则这个一次函数的解析式为____________.
11、(4分)如图,若△DEF是由△ABC沿BC方向平移得到的,EF=5,EC=3,则平移的距离是_____.
12、(4分)如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形中,,,则的长为_______________.
13、(4分)如图,在中,,以顶点为圆心,适当长为半径画弧,分别交,于点,,再分别以点,为圆心,大于的长为半径画弧,两弧交于点,作射线交于点,若,,则的值是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)1号探测气球从海拔5m处出发,以1m/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升.两个气球都匀速上升了50min.设气球上升时间为x(x≥0).
(Ⅰ)根据题意,填写下表
(Ⅱ)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由.
(Ⅲ)当0≤x≤50时,两个气球所在位置的海拔最多相差多少米?
15、(8分)先化简:,并从中选取合适的整数代入求值.
16、(8分)某班开展勤俭节约的活动,对每个同学的一天的消费情况进行调查,得到统计图如图所示:
(1)求该班的总人数;
(2)将条形图补充完整,并写出消费金额的中位数;
(3)该班这一天平均每人消费多少元?
17、(10分)如图,在直角坐标系中,,,是线段上靠近点的三等分点.
(1)求点的坐标;
(2)若点是轴上的一动点,连接、,当的值最小时,求出的坐标及的最小值;
(3)如图2,过点作,交于点,再将绕点作顺时针方向旋转,旋转角度为,记旋转中的三角形为,在旋转过程中,直线与直线的交点为,直线与直线交于点,当为等腰三角形时,请直接写出的值.
18、(10分)如图,经过点的一次函数与正比例函数交于点.
(1)求,,的值;
(2)请直接写出不等式组的解集.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知正方形的边长为,则图中阴影部分的面积为__________.
20、(4分)如图,在矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的点E处,折痕的一端点G在边BC上,BG=1.
如图1,当折痕的另一端点F在AB边上时,EFG的面积为_____;
如图2,当折痕的另一端点F在AD边上时,折痕GF的长为_____.
21、(4分)一个多边形的内角和是它外角和的1.5倍,那么这个多边形是______边形.
22、(4分)某公司招聘员工一名,对甲、乙两位应试者进行了面试和笔试,他们的成绩(百分制)如下表所示:
若公司将面试成绩、笔试成绩分别赋予6和4的权,则被录取的人是__________.
23、(4分)如图,梯形ABCD中,AB∥CD,点E、F、G分别是BD、AC、DC的中点.已知两底差是6,两腰和是12,则△EFG的周长是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)已知,梯形ABCD中,AB∥CD,BC⊥AB,AB=AD,连接BD(如图a),点P沿梯形的边,从点A→B→C→D→A移动,设点P移动的距离为x,BP=y.
(1)求证:∠A=2∠CBD;
(2)当点P从点A移动到点C时,y与x的函数关系如图(b)中的折线MNQ所示,试求CD的长.
(3)在(2)的情况下,点P从A→B→C→D→A移动的过程中,△BDP是否可能为等腰三角形?若能,请求出所有能使△BDP为等腰三角形的x的取值;若不能,请说明理由.
25、(10分)如图,,,.求证:四边形是平行四边形.
26、(12分)解方程
(1)+=3 (2)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A、抛掷一枚硬币,落地后正面朝上是随机事件;
B、篮球运动员投篮,投进篮筺是随机事件;
C、自然状态下水从高处流向低处是必然事件;
D、打开电视机,正在播放新闻是随机事件;
故选:C.
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
2、C
【解析】
先根据二次根式有意义的条件求出a-1<0,再根据二次根式的性质把根号外的因式平方后移入根号内,即可得出答案.
【详解】
∵要是根式有意义,必须-≥0,
∴a-1<0,
∴(a-1)=-,
故选C.
本题考查了二次根式的性质的应用,注意:当m≥0时,m=,当m≤0时,m=-.
3、C
【解析】
先求出点A关于y轴的对称点,即可知道平移的规律.
【详解】
∵点关于y轴的对称点为(2,3)
∴应把点向右平移个单位,
故选C.
此题主要考查直角坐标系的坐标变换,解题的关键是熟知找到点A关于y轴的对称点.
4、B
【解析】
平行于y轴的直线上的点的横坐标相同.由此即可解答.
【详解】
直角坐标系下两个点的横坐标相同且不为零,则说明这两点到y轴的距离相等,且在y轴的同一侧,所以过这两点的直线平行于y轴.
故选B.
本题考查坐标与图形的性质,关键是根据:两点的横坐标相同,到y轴的距离相等,过这两点的直线平行于y轴解答.
5、C
【解析】
连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.
【详解】
连接AE,
∵AB=AD=AF,∠D=∠AFE=90°,
由折叠的性质得:Rt△ABG≌Rt△AFG,
在△AFE和△ADE中,
∵AE=AE,AD=AF,∠D=∠AFE,
∴Rt△AFE≌Rt△ADE,
∴EF=DE,
设DE=FE=x,则CG=3,EC=6−x.
在直角△ECG中,根据勾股定理,得:
(6−x)2+9=(x+3)2,
解得x=2.
则DE=2.
熟练掌握翻折变换、正方形的性质、全等三角形的判定与性质是本题的解题关键.
6、D
【解析】
试题解析:设这个多边形的边数为n,
由题意可得:(n-2)×180°=1260°,
解得n=9,
∴这个多边形的边数为9,
故选D.
7、A
【解析】
对各项的说法逐一进行判断即可.
【详解】
A. 掷一颗骰子,点数一定小于等于6,正确;
B. 抛一枚硬币,反面不一定朝上,错误;
C. 为了解一种灯泡的使用寿命,宜采用抽样调查的方法,错误;
D. “明天的降水概率为90%”,表示明天会有90%的几率下雨,错误;
故答案为:A.
本题考查了命题的问题,掌握概率的性质、概率统计的方法是解题的关键.
8、B
【解析】
根据同族二次方程的定义,可得出a和b的值,从而解得代数式的最小值.
【详解】
解:与为同族二次方程.
,
,
∴,
解得:.
,
当时,取最小值为2013.
故选:B.
此题主要考查了配方法的应用,解二元一次方程组的方法,理解同族二次方程的定义是解答本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
【分析】抽签有4种可能的结果,其中抽到甲的只有一种结果,根据概率公式进行计算即可得.
【详解】甲、乙、丙、丁四人都有机会跑第一棒,而且机会是均等的,
抽签抽到甲跑第一棒有一种可能,
所以甲跑第一棒的概率为,
故答案为:.
【点睛】本题考查了简单的概率计算,用到的知识点为:概率=所求情况数与总情况数之比.
10、
【解析】
设一次函数的解析式为:,利用待定系数法把已知点的坐标代入解析式,解方程组即可得答案.
【详解】
解:设一次函数的解析式为:,
解得:
所以这个一次函数的解析式为:
故答案为:
本题考查的是利用待定系数法求解一次函数的解析式,掌握待定系数法是解题的关键.
11、1
【解析】
平移的距离为线段BE的长求出BE即可解决问题;
【详解】
∵BC=EF=5,EC=3,
∴BE=1,
∴平移距离是1,
故答案为:1.
本题考查平移的性质,解题的关键是理解题意,灵活运用所学知识解决问题.
12、4
【解析】
首先由对边分别平行可判断四边形ABCD为平行四边形,连接AC和BD,过A点分别作DC和BC的垂线,垂足分别为F和E,通过证明△ADF≌△ABC来证明四边形ABCD为菱形,从而得到AC与BD相互垂直平分,再利用勾股定理求得BD长度.
【详解】
解:连接AC和BD,其交点为O,过A点分别作DC和BC的垂线,垂足分别为F和E,
∵AB∥CD,AD∥BC,
∴四边形ABCD为平行四边形,
∴∠ADF=∠ABE,
∵两纸条宽度相同,
∴AF=AE,
∵
∴△ADF≌△ABE,
∴AD=AB,
∴四边形ABCD为菱形,
∴AC与BD相互垂直平分,
∴BD=
故本题答案为:4
本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.
13、1
【解析】
过点D作DE⊥BC于E,根据角平分线的作法可知CD平分∠ACB,然后根据角平分线的性质可得DE=AD=3,然后根据三角形的面积公式求面积即可.
【详解】
解:过点D作DE⊥BC于E
由题意可知:CD平分∠ACB
∵
∴DE=AD=3
∵
∴=
故答案为:1.
此题考查的是用尺规作图作角平分线和角平分线的性质,掌握角平分线的作法和角平分线的性质是解决此题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)35;;30;;(2)此时气球上升了20min,都位于海拔25m的高度;(3)当时,y最大值为15.
【解析】
(Ⅰ)根据距离=速度×时间,分别计算即可得答案;(Ⅱ)根据上升的高度相同列方程可求出x的值,进而可求出两个气球所在高度;(Ⅲ)设两个气球在同一时刻所在的位置的海拔相差m,由(Ⅱ)可知x=20时,两气球所在高度相同,当0≤x
相关试卷
这是一份2025届湖北省武汉新洲区五校联考九上数学开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届哈尔滨松北区七校联考九上数学开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届广西贵港港南区六校联考九上数学开学监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。