2025届吉林省长春农安县联考数学九年级第一学期开学学业水平测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列图形中,既是轴对称又是中心对称图形的是( )
A.菱形B.等边三角形C.平行四边形D.直角三角形
2、(4分)若一个正n边形的每个内角为144°,则n等于( )
A.10B.8C.7D.5
3、(4分)要使分式有意义,应满足的条件是( )
A.B.C.D.
4、(4分)下列各组数中的三个数值分别为三角形的三边长,不能构成直角三角形的是( )
A.3、4、5B.5、12、13C.D.7、24、25
5、(4分)下列各数中比3大比4小的无理数是( )
A.B.C.3.1D.
6、(4分)如果一个多边形的内角和是它外角和的倍,那么这个多边形的边数为( )
A.B.C.D.
7、(4分)下列说法:
四边相等的四边形一定是菱形
顺次连接矩形各边中点形成的四边形一定是正方形
对角线相等的四边形一定是矩形
经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分
其中正确的有 个.
A.4B.3C.2D.1
8、(4分)在我县“我的中国梦”演讲比赛中,有7名同学参加了比赛,他们最终决赛的成绩各不相同.其中一名学生想要知道自己是否进入前3名,不仅要知道自己的分数,还得知道这7名学生成绩的( )
A.众数B.方差C.平均数D.中位数
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,菱形ABCD的面积为24cm2,正方形ABCF的面积为18cm2,则菱形的边长为_____.
10、(4分)如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为______.
11、(4分)在一次数学活动课上,老师让同学们借助一副三角板画平行线AB,下面是小楠、小曼两位同学的作法:
老师说:“小楠、小曼的作法都正确”
请回答:小楠的作图依据是______;
小曼的作图依据是______.
12、(4分)已知直线y=2x+4与x轴、y轴分别交于A、B两点,点P(-1,m)为平面直角坐标系内一动点,若△ABP面积为1,则m的值为______.
13、(4分)如图,已知等腰直角△ABC中,∠BAC=90°,AD⊥BC于点D,AB=5,点E是边AB上的动点(不与A,B点重合),连接DE,过点D作DF⊥DE交AC于点F,连接EF,点H在线段AD上,且DH=AD,连接EH,HF,记图中阴影部分的面积为S1,△EHF的面积记为S2,则S1=_____,S2的取值范围是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)请阅读材料,并完成相应的任务.
阿波罗尼奥斯(约公元前262~190年),古希腊数学家,与欧几里得、阿基米德齐名.他的著作《圆锥曲线论》是古代世界光辉的科学成果,可以说是代表了希腊几何的最高水平.阿波罗尼奧斯定理,是欧氏几何的定理,表述三角形三边和中线的长度关系,即三角形任意两边的平方和等于第三边的一半与该边中线的平方和的2倍.
(1)下面是该结论的部分证明过程,请在框内将其补充完整;
已知:如图1所示,在锐角中,为中线..
求证:
证明:过点作于点
为中线
设,,
,
在中,
在中,__________
在中,__________
__________
(2)请直接利用阿波罗尼奧斯定理解决下面问题:
如图2,已知点为矩形内任一点,
求证:(提示:连接、交于点,连接)
15、(8分)在矩形中,点在上,,,垂足为.
(1)求证:;
(2)若,且,求.
16、(8分)如图,直线y=kx+b经过点A(0,5),B(1,4).
(1)求直线AB的解析式;
(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;
(3)根据图象,写出关于x的不等式2x﹣4≥kx+b的解集.
17、(10分)如图,利用一面墙(墙的长度不限),用20m长的篱笆围成一个面积为50m2矩形场地,求矩形的宽BC.
18、(10分)钓鱼岛是我国的神圣领土,中国人民维护国家领土完整的决心是坚定的,多年来,我国的海监、渔政等执法船定期开赴钓鱼岛巡视.某日,我海监船(A处)测得钓鱼岛(B处)距离为20海里,海监船继续向东航行,在C处测得钓鱼岛在北偏东45°的方向上,距离为10海里,求AC的距离.(结果保留根号)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)当__________时,分式的值等于零.
20、(4分)一副常规的直角三角板如图放置,点在的延长线上,,,若,则______.
21、(4分)某种细菌的直径约为0.00 000 002米,用科学记数法表示该细菌的直径约为____米.
22、(4分)如图,在菱形ABCD中,过点C作CEBC交对角线BD 于点 E ,若ECD20 ,则ADB____________.
23、(4分)一个多边形的内角和等于 1800°,它是______边形.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE
(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.
25、(10分)如图,在中,,相交于点,点在上,点在上,经过点.求证:四边形是平行四边形.
26、(12分)如图,已知点M,N分别是平行四边形ABCD的边AB,DC的中点.求证:四边形AMCN为平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据轴对称图形和中心对称图形对各选项分析判断即可得解.
【详解】
A. 菱形既是轴对称又是中心对称图形,故本选项正确;
B. 等边三角形是轴对称,不是中心对称图形,故本选项错误;
C. 平行四边形不是轴对称,是中心对称图形,故本选项错误;
D. 直角三角形不是轴对称(等腰直角三角形是),也不是中心对称图形,故本选项错误.
故选A.
本题主要考查图形的中心对称和图形的轴对称概念,熟悉掌握概念是关键.
2、A
【解析】
根据多边形的内角和公式列出关于n的方程,解方程即可求得答案.
【详解】
∵一个正n边形的每个内角为144°,
∴144n=180×(n-2),解得:n=10,
故选A.
本题考查了多边形的内角和公式,熟练掌握多边形的内角和公式是解题的关键.
3、C
【解析】
直接利用分式有意义的条件得出答案.
【详解】
要使分式有意义,
则x-1≠0,
解得:x≠1.
故选:C.
此题考查分式有意义的条件,正确把握分式的定义是解题关键.
4、C
【解析】
【分析】根据勾股定理的逆定理,只要验证每组数中的两个较小的数的平方和等于最大的边的平方,即可构成直角三角形;否则,则不能构成.
【详解】A、32+42=25=52,故能构成直角三角形;
B、52+122=169=132,故能构成直角三角形;
C、22+()2=7≠()2,故不能构成直角三角形;
D、72+242=625=252,故能构成直角三角形,
故选C.
【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
5、A
【解析】
由于带根号的要开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求解.
【详解】
∵四个选项中是无理数的只有和,而>4,3<<4,
∴选项中比3大比4小的无理数只有.
故选:A.
此题主要考查了无理数的定义,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.
6、B
【解析】
根据多边形的内角和公式(n−2)⋅110°与外角和定理列出方程,然后求解即可.
【详解】
解:设这个多边形是n边形,
根据题意得,(n−2)⋅110°=3×360°,
解得n=1.
故选B.
本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.
7、C
【解析】
∵四边相等的四边形一定是菱形,∴①正确;
∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;
∵对角线相等的平行四边形才是矩形,∴③错误;
∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;
其中正确的有2个,故选C.
考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.
8、D
【解析】
由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.
【详解】
由于总共有7个人,且他们的成绩各不相同,第3的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少.
故选:D.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、5cm
【解析】
根据正方形的面积可用对角线进行计算解答即可.
【详解】
解:因为正方形AECF的面积为18cm2,
所以AC==6cm,
因为菱形ABCD的面积为24cm2,
所以BD==8cm,
所以菱形的边长==5cm.
故答案为:5cm.
此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.
10、1或1或1
【解析】
分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.
【详解】
如图1,当∠AMB=90°时,
∵O是AB的中点,AB=8,
∴OM=OB=1,
又∵∠AOC=∠BOM=60°,
∴△BOM是等边三角形,
∴BM=BO=1,
∴Rt△ABM中,AM==;
如图2,当∠AMB=90°时,
∵O是AB的中点,AB=8,
∴OM=OA=1,
又∵∠AOC=60°,
∴△AOM是等边三角形,
∴AM=AO=1;
如图3,当∠ABM=90°时,
∵∠BOM=∠AOC=60°,
∴∠BMO=30°,
∴MO=2BO=2×1=8,
∴Rt△BOM中,BM==,
∴Rt△ABM中,AM==.
综上所述,当△ABM为直角三角形时,AM的长为或或1.故答案为或或1.
11、同位角相等,两直线平行或垂直于同一直线的两条直线平行 内错角相等,两直线平行
【解析】
由平行线的判定方法即可得到小楠、小曼的作图依据.
【详解】
解:∵∠B=∠D=90°,
∴AB//CD(同位角相等,两直线平行);
∵∠ABC=∠DCB=90°,
∴AB//CD(内错角相等,两直线平行),
故答案为:同位角相等,两直线平行(或垂直于同一直线的两条直线平行);内错角相等,两直线平行.
本题考查了作图-复杂作图和平行线的判定方法,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
12、3或1
【解析】
过点P作PE⊥x轴,交线段AB于点E,即可求点E坐标,根据题意可求点A,点B坐标,由可求m的值.
【详解】
解:∵直线y=2x+4与x轴、y轴分别交于A、B两点,
∴当x=0时,y=4
当y=0时,x=-2
∴点A(-2,0),点B(0,4)
如图:过点P作PE⊥x轴,交线段AB于点E
∴点E横坐标为-1,
∴y=-2+4=2
∴点E(-1,2)
∴|m-2|=1
∴m=3或1
故答案为:3或1
本题考查了一次函数图象上点的坐标特征,熟练运用一次函数的性质解决问题是本题的关键.
13、
【解析】
作EM⊥BC于M,作FN⊥AD于N,根据题意可证△ADF≌△BDE,可得△DFE是等腰直角三角形.可证△BME≌△ANF,可得NF=BM.所以S1= HD×BD,
代入可求S1.由点E是边AB上的动点(不与A,B点重合),可得DE垂直AB时DE最小,即,且S2=S△DEF-S1,代入可求S2的取值范围
【详解】
作EM⊥BC于M,作FN⊥AD于N,
∵EM⊥BD,AD⊥BC
∴EM∥AD
∵△ABC是等腰直角三角形,AD⊥BC,AB=5
∴∠B=∠C=45°=∠BAD=∠DAC,BD=CD=AD=
∵DF⊥DE
∴∠ADF+∠ADE=90°且∠ADE+∠BDE=90°
∴∠ADF=∠BDE且AD=BD,∠B=∠DAF=45°
∴△ADF≌△BDE,
∴AF=BE,DE=DF
∴△DEF是等腰直角三角形,
∵AF=BE,∠B=∠DAF=45°,∠EMB=∠ANF=90°
∴△BME≌△ANF
∴NF=BM
∵∵点E是边AB上的动点
∴
∵
∴
本题考查全等三角形的判定和性质,等腰直角三角形的性质,关键是证△DEF是等腰直角三角形.
三、解答题(本大题共5个小题,共48分)
14、(1),,;(2)见解析
【解析】
(1)利用勾股定理即可写出答案;
(2)连接、交于点,根据矩形的性质能证明O是AC、BD的中点,在和中利用阿波罗尼奥斯定理可以证明结论.
【详解】
(1)在中,
在中,
∴
故答案是:;;;
(2)证明:连接、交于点,连接
∵四边形为矩形,
∴OA=OC,OB=OD,AC=BD,
由阿波罗尼奥斯定理得
.
本题考查了矩形的性质及勾股定理的运用,能充分理解题意并运用性质定理推理论证是解题的关键.
15、(1)见解析;(2)AD=.
【解析】
(1)利用“AAS”证明△ADF≌△EAB即可得;
(2)证明△AFD是等腰直角三角形,得出AF=DF=AB=4,利用勾股定理即可求出AD.
【详解】
(1)证明:在矩形ABCD中,AD∥BC,
∴∠AEB=∠DAF,
又∵DF⊥AE,
∴∠DFA=90°,
∴∠DFA=∠B,
在△ADF和△EAB中,,
∴△ADF≌△EAB(AAS),
∴DF=AB;
(2)解:∵∠FEC=135°,
∴∠AEB=180°−∠FEC=45°,
∴∠DAF=∠AEB=45°,
∴△AFD是等腰直角三角形,
∴AF=DF=AB=4,
∴AD=.
本题主要考查矩形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质及勾股定理;熟练掌握矩形的性质,证明三角形全等是解题的关键.
16、(1)y=﹣x+5;(2)点C的坐标为(1,2);(1)x≥1.
【解析】
(1)利用待定系数法求一次函数解析式解答即可;
(2)联立两直线解析式,解方程组即可得到点C的坐标;
(1)根据图形,找出点C左边的部分的x的取值范围即可.
【详解】
(1)∵直线y=﹣kx+b经过点A(5,0)、B(1,4),
∴,
解方程组得,
∴直线AB的解析式为y=﹣x+5;
(2)∵直线y=2x﹣4与直线AB相交于点C,
∴解方程组,
解得,
∴点C的坐标为(1,2);
(1)由图可知,x≥1时,2x﹣4≥kx+b.
本题考查两条直线相交或平行问题,解题的关键是掌握一次函数与一元一次不等式和待定系数法求一次函数解析式.
17、5m
【解析】
设矩形的宽BC=xm.根据面积列出方程求解可得.
【详解】
解:设矩形的宽BC=xm.则AB=(20-2x)m,
根据题意得: x(20-2x)=50,
解得:,
答:矩形的宽为5m.
此题考查了一元二次方程的应用,列方程时要找到题目中的等量关系,所求得的解要符合实际情况.
18、AC的距离为(10﹣10)海里
【解析】
作BD⊥AC交AC的延长线于D,根据正弦的定义求出BD、CD的长,根据勾股定理求出AD的长,计算即可.
【详解】
作BD⊥AC交AC的延长线于D,
由题意得,∠BCD=45°,BC=10海里,
∴CD=BD=10海里,
∵AB=20海里,BD=10海里,
∴AD= =10,
∴AC=AD﹣CD=10﹣10海里.
答:AC的距离为(10﹣10)海里.
本题考查的是解直角三角形的应用-方向角问题,熟记锐角三角函数的定义、正确标注方向角、正确作出辅助线是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-2
【解析】
令分子为0,分母不为0即可求解.
【详解】
依题意得x2-4=0,x-2≠0,解得x=-2,
故填:-2.
此题主要考查分式的值,解题的关键是熟知分式的性质.
20、
【解析】
作BM⊥FC于M,CN⊥AB于N,根据矩形的性质得到BM=CN,再根据直角三角形的性质求出AB,再根据勾股定理求出BC,结合图形即可求解.
【详解】
作BM⊥FC于M,CN⊥AB于N,
∵AB∥CF,
∴四边形BMCN是矩形,∠BCM=∠ABC=30°,
∴BM=CN,
∵∠ACB=90°,∠ABC=30°,
∴AB=2AC=4,
由勾股定理得BC=
∴BM=CN=BC=
由勾股定理得CM=
∵∠EDF=45°,∴DM=BM=
∴CD=CM-DM=
此题主要考查矩形的判定与性质,解题的关键是熟知勾股定理、含30°的直角三角形及等腰直角三角形的性质.
21、
【解析】
试题解析:0.00 000 002=2×10-8.
点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
22、35°
【解析】
由已知条件可知:∠BCD=110°,根据菱形的性质即可求出ADB的度数.
【详解】
∵CEBC,ECD20,
∴∠BCD=110°,
∵四边形ABCD是菱形,∴∠BCD+∠ADC=180°,∠ADB=,
∴∠ADC=70°,∴∠ADB==35°,
本题考查了菱形的性质,牢记菱形的性质是解题的关键.
23、十二
【解析】
根据多边形的内角和公式列方程求解即可;
【详解】
设这个多边形是n边形,
由题意得,(n-2)•180°=1800°,
解得n=12;
故答案为十二
本题考查了多边形的内角和,关键是掌握多边形的内角和公式.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2)1.
【解析】
分析:(1)只要证明三个角是直角即可解决问题;
(2)作OF⊥BC于F.求出EC、OF的长即可;
详解:(1)证明:∵AD∥BC,
∴∠ABC+∠BAD=180°,
∵∠ABC=90°,
∴∠BAD=90°,
∴∠BAD=∠ABC=∠ADC=90°,
∴四边形ABCD是矩形.
(2)作OF⊥BC于F.
∵四边形ABCD是矩形,
∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,
∴AO=BO=CO=DO,
∴BF=FC,
∴OF=CD=1,
∵DE平分∠ADC,∠ADC=90°,
∴∠EDC=45°,
在Rt△EDC中,EC=CD=2,
∴△OEC的面积=•EC•OF=1.
点睛:本题考查矩形的判定和性质、角平分线的定义、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题
25、见解析.
【解析】
先利用平行四边形的性质得到,;再利用平行线性质证得,;利用三角形全等可得,即可求证.
【详解】
在中,,相交于点,
,.
,.
(AAS).
.
四边形是平行四边形.
本题考查了平行四边形的证明,难度适中,熟练掌握平行四边形的性质是解题的关键.
26、见解析
【解析】
首先可由平行四边形的性质得到ABCD 、AB=CD,再由中点的性质可得AM=CN,根据有一组对边平行且相等的四边形是平行四边形的判定方法,即可得出结论.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB=CD,ABCD,
又∵点M,N分别是AB,DC的中点,
∴AM=CN,
∴四边形AMCN为平行四边形.
故答案为:见解析.
本题考查了平行四边形的性质及判定,熟练掌握性质和判定方法是解题关键.
题号
一
二
三
四
五
总分
得分
2025届吉林省农安县九年级数学第一学期开学调研试题【含答案】: 这是一份2025届吉林省农安县九年级数学第一学期开学调研试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届吉林省安图县联考九年级数学第一学期开学学业水平测试模拟试题【含答案】: 这是一份2025届吉林省安图县联考九年级数学第一学期开学学业水平测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届安徽芜湖无为县联考数学九年级第一学期开学学业水平测试试题【含答案】: 这是一份2025届安徽芜湖无为县联考数学九年级第一学期开学学业水平测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。