|试卷下载
终身会员
搜索
    上传资料 赚现金
    2025届湖南省长沙市雅礼教育集团九上数学开学考试模拟试题【含答案】
    立即下载
    加入资料篮
    2025届湖南省长沙市雅礼教育集团九上数学开学考试模拟试题【含答案】01
    2025届湖南省长沙市雅礼教育集团九上数学开学考试模拟试题【含答案】02
    2025届湖南省长沙市雅礼教育集团九上数学开学考试模拟试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届湖南省长沙市雅礼教育集团九上数学开学考试模拟试题【含答案】

    展开
    这是一份2025届湖南省长沙市雅礼教育集团九上数学开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列分式中,是最简分式的是( )
    A.B.C.D.
    2、(4分)已知:1号探测气球从海拔5m处匀速上升,同时,2号探测气球从海拔15m处匀速上升,且两个气球都上升了1h.两个气球所在位置的海拔y(单位:m)与上升时间x(单位:min)之间的函数关系如图所示,根据图中的信息,下列说法:
    ①上升20min时,两个气球都位于海拔25m的高度;
    ②1号探测气球所在位置的海拔关于上升时间x的函数关系式是y=x+5(0≤x≤60);
    ③记两个气球的海拔高度差为m,则当0≤x≤50时,m的最大值为15m.
    其中,说法正确的个数是( )
    A.0B.1C.2D.3
    3、(4分)一种微粒的半径是4×10-5米,用小数表示为( )
    A.0.000004米B.0.000004米C.0.00004米D.0.0004米
    4、(4分)如图,直线与相交于点,点的横坐标为,则关于的不等式的解集在数轴上表示正确的是( )
    A.B.
    C.D.
    5、(4分)下面二次根式中,是最简二次根式的是( )
    A.B.C.D.
    6、(4分)如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于点D,交AB于点E,下列叙述结论错误的是( )
    A.BD平分∠ABCB.△BCD的周长等于AB+BC
    C.点D是线段AC的中点D.AD=BD=BC
    7、(4分)下列曲线中能够表示y是x的函数的有( )
    A.①②③B.①②④C.①③④D.②③④
    8、(4分)菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线的长度是( )
    A.cmB.cmC.cmD.5cm
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)化简: =_________.
    10、(4分)我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形,如果四边形的中点四边形是矩形,则对角线_____.
    11、(4分)使分式的值为整数的所有整数的和是________.
    12、(4分)已知甲乙两车分别从A、B两地出发,相向匀速行驶,已知乙车先出发,1小时后甲车再出发.一段时间后,甲乙两车在休息站C地相遇:到达C地后,乙车不休息继续按原速前往A地,甲车休息半小时后再按原速前往B地,甲车到达B地停止运动;乙车到A地后立刻原速返回B地,已知两车间的距离y(km)随乙车运动的时间x(h)变化如图,则当甲车到达B地时,乙车距离B地的距离为_____(km).
    13、(4分)如图,以Rt△ABC的斜边AB为一边在△ABC同侧作正方形ABEF.点O为AE与BF的交点,连接CO.若CA=2,CO=,那么CB的长为________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)(感知)如图①在等边△ABC和等边△ADE中,连接BD,CE,易证:△ABD≌△ACE;
    (探究)如图②△ABC与△ADE中,∠BAC=∠DAE,∠ABC=∠ADE,求证:△ABD∽△ACE;
    (应用)如图③,点A的坐标为(0,6),AB=BO,∠ABO=120°,点C在x轴上运动,在坐标平面内作点D,使AD=CD,∠ADC=120°,连结OD,则OD的最小值为 .
    15、(8分)己知一次函数的图象过点,与y轴交于点B.求点B的坐标和k的值.
    16、(8分)如图1,在平面直角坐标系中,直线AB与x轴、y轴相交于、两点,动点C在线段OA上(不与O、A重合),将线段CB绕着点C顺时针旋转得到CD,当点D恰好落在直线AB上时,过点D作轴于点E.
    (1)求证,;
    (2)如图2,将沿x轴正方向平移得,当直线经过点D时,求点D的坐标及平移的距离;
    (3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐标,若不存在,请说明理由.
    17、(10分)已知一次函数y=kx-4,当x=2时,y=-3.
    (1)求一次函数的表达式;
    (2)将该函数的图像向上平移6个单位长度,求平移后的图像与x轴交点的坐标.
    18、(10分)我市某学校2016年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.
    (1)求购买一个甲种足球、一个乙种足球各需多少元;
    (2)2017年为大力推动校园足球运动,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过3000元,那么这所学校最多可购买多少个乙种足球?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知一次函数的图像如图所示,当x< 2时,y的取值范围是________.
    20、(4分)方程的解为:___________.
    21、(4分)一个有进水管和出水管的容器,从某时刻开始4 min内只进水不出水,在随后的8 min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为________________
    22、(4分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm.
    23、(4分)关于x的一次函数,当_________时,它的图象过原点.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)第二届全国青年运动会将于2019年8月在太原开幕,这是山西历史上第一次举办全国大型综合性运动会,必将推动我市全民健康理念的提高.某体育用品商店近期购进甲、乙两种运动衫各50件,甲种用了2000元,乙种用了2400元.商店将甲种运动衫的销售单价定为60元,乙种运动衫的销售单价定为88元.该店销售一段时间后发现,甲种运动衫的销售不理想,于是将余下的运动衫按照七折销售;而乙种运动衫的销售价格不变.商店售完这两种运动衫至少可获利2460元,求甲种运动衫按原价销售件数的最小值.
    25、(10分)如图,矩形ABCD中,AB=4,BC=3,以BD为腰作等腰△BDE交DC的延长线于点E,求BE的长.
    26、(12分)已知:如图,直线l是一次函数的图象求:
    这个函数的解析式;
    当时,y的值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据最简分式的定义对四个分式分别进行判断即可.
    【详解】
    A、=,不是最简分式;
    B、=,不是最简分式;
    C、,是最简分式;
    D、=,不是最简分式;
    故选C.
    本题考查了最简分式:一个分式的分子与分母没有公因式时,叫最简分式.
    2、D
    【解析】
    根据一次函数的图象和性质,由两点坐标分别求出1、2号探测球所在位置的海拔y关于上升时间x的函数关系式,结合图象即可判定结论是否正确.
    【详解】
    从图象可知,上升20min时,两个气球都位于海拔25m的高度,故①正确;
    1号探测气球的图象过 设=kx+b,代入点坐标可求得关系式是=x+5(0≤x≤60),同理可求出,2号球的函数解析式为,故②正确;
    利用图象可以看出,20min后,1号探测气球的图象始终在2号探测气球的图象的上方,而且都随着x的增大而增大,所以当x=50时,两个气球的海拔高度差m有最大值,此时m=,代入x=50,得m=15,故③正确.
    考查了一次函数的图象和性质,一次函数解析式的求法,图象增减性的综合应用,熟记图象和性质特征是解题的关键.
    3、C
    【解析】
    小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    4×10-5= 0.00004
    故答案为:C
    考查了科学计数法,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).
    4、C
    【解析】
    由图像可知当x<-1时,,然后在数轴上表示出即可.
    【详解】
    由图像可知当x<-1时,,
    ∴可在数轴上表示为:
    故选C.
    本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y1>y2时x的范围是函数y1的图象在y2的图象上边时对应的未知数的范围,反之亦然.
    5、C
    【解析】
    根据最简二次根式的概念进行判断即可.
    【详解】
    A、不是最简二次根式,错误;
    B、不是最简二次根式,错误;
    C、是最简二次根式,正确;
    D、不是最简二次根式,错误;
    故选C.
    本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.
    6、C
    【解析】
    分析:由△ABC中,AB=AC,∠A=36°,可求得∠ABC与∠C的度数,又由AB的垂直平分线DE交AC于D,交AB于E,根据线段垂直平分线的性质,可证得AD=BD,继而可求得∠ABD,∠DBC的度数,则可得BD平分∠ABC;又可求得∠BDC的度数,则可证得AD=BD=BC;可求得△BDC的周长等于AB+BC.
    详解:∵△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C=(180°-36°)÷2=72°,
    ∵AB的垂直平分线DE交AC于D,交AB于E,∴AD=BD,∴∠ABD=∠A=36°,
    ∵∠DBC=∠ABC-∠ABD=36°=∠ABD,∴BD平分∠ABC;故A正确;
    ∴∠BDC=180°-∠DBC-∠C=72°,∴∠BDC=∠C,∴BD=BC=AD,故D正确;
    △BDC的周长等于BD+DC+BC=AD+DC+BC=AC+BC=AB+BC;故B正确;
    ∵AD=BD>CD,∴D不是AC的中点,故C错误.故选C.
    点睛:此题考查了线段垂直平分线的性质与等腰三角形的判定与性质.此题难度适中,注意掌握转化思想与数形结合思想的应用.
    7、A
    【解析】
    根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之相对应,据此即可确定哪一个是函数图象.
    【详解】
    解:①②③的图象都满足对于x的每一个取值,y都有唯一确定的值与之相对应,故①②③的图象是函数,
    ④的图象不满足满足对于x的每一个取值,y都有唯一确定的值与之相对应,故D不能表示函数.
    故选:A.
    主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
    8、B
    【解析】
    如图所示:
    ∵菱形的周长为20cm,
    ∴菱形的边长为5cm,
    ∵两邻角之比为1:2,
    ∴较小角为60°,
    ∴∠ABO=30°,AB=5cm,
    ∵最长边为BD,BO=AB⋅cs∠ABO=5×= (cm),
    ∴BD=2BO= (cm).
    故选B.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据根式的性质即可化简.
    【详解】
    解: =
    本题考查了根式的化简,属于简单题,熟悉根式的性质是解题关键.
    10、⊥
    【解析】
    作出图形,根据三角形的中位线定理可得GH∥AC,同理可得EF∥AC,HG∥EF,HE∥GF,可得中点四边形是平行四边形,要想保证中点四边形是矩形,需要对角线互相垂直.
    【详解】
    解:∵H、G,分别为AD、DC的中点,
    ∴HG∥AC,
    同理EF∥AC,
    ∴HG∥EF;
    同理可知HE∥GF.
    ∴四边形EFGH是平行四边形.
    当AC⊥BD时,AC⊥EH.
    ∴GH⊥EH.
    ∴∠EHG=90°.
    ∴四边形EFGH是矩形.
    故答案为:⊥.
    本题考查了三角形的中位线定理,矩形的判定,熟练运用三角形的中位线定理是解题的关键.
    11、1
    【解析】
    由于分式的值为整数,m也是整数,则可知m-1是4的因数,据此来求解.
    【详解】
    解:∵分式的值为整数,
    ∴是4的因数,
    ∴,,,
    又∵m为整数,,
    ∴m=5,3,2,0,-1,-3,
    则它们的和为:5+3+2+0+(-1)+(-3)=1,
    故答案为:1.
    本题考查了分式的值,要注意分母不能为0,且m为整数.
    12、1
    【解析】
    先从图象中获取信息得知A,B两地之间的距离及乙的行驶时间求出乙车的速度,然后再根据两车的相遇时间求出甲的速度,然后求出甲车行完全程的时间,就可以算出此时乙车的行驶时间,用总时间减去甲行完全程时的时间求出乙车剩下的时间,再乘以乙车的速度即可求出路程.
    【详解】
    由图象可知,A、B两地相距990千米,而乙来回用时22小时,因此乙车的速度为:
    990÷(22÷2)=90千米/小时,
    甲乙两车在C地相遇后,甲休息0.5小时,乙继续走,所以乙车出发7小时后两车相遇,因此甲车速度为:
    (990﹣90×7)÷(7﹣1)=60千米/小时,
    甲车行完全程的时间为:990÷60=16.5小时,此时乙车已经行驶16.5+0.5+1=18小时,
    因此乙车距B地还剩22﹣18=4小时的路程,
    所以当甲车到达B地时,乙车距离B地的距离为90×4=1千米,
    故答案为:1.
    本题主要考查一次函数的应用,能够从图象中获取有用信息并掌握行程问题的解法是解题的关键.
    13、+2
    【解析】
    如图,在BC上截取BD=AC=2,连接OD,
    ∵四边形AFEB是正方形,
    ∴AO=BO,∠AOB=∠ACB=90°,
    ∴∠CAO=90°-∠ACH,∠DBO=90°-∠BHO,
    ∵∠ACH=∠BHO,
    ∴∠CAO=∠DBO,
    ∴△ACO≌△BDO,
    ∴DO=CO=,∠AOC=∠BOD,
    ∵∠BOD+∠AOD=90°,
    ∴∠AOD+∠AOC=90°,即∠COD=90°,
    ∴CD=,
    ∴BC=BD+CD=.
    故答案为:.
    点睛:本题的解题要点是,通过在BC上截取BD=AC,并结合已知条件证△ACO≌△BDO来证得△COD是等腰直角三角形,这样即可求得CD的长,从而使问题得到解决.
    三、解答题(本大题共5个小题,共48分)
    14、探究:见解析;应用:.
    【解析】
    探究:由△DAE∽△BAC,推出,可得,由此即可解决问题;
    应用:当点D在AC的下方时,先判定△ABO∽△ADC,得出,再根据∠BAD=∠OAC,得出△ACO∽△ADB,进而得到∠ABD=∠AOC=90°,得到当OD⊥BE时,OD最小,最后过O作OF⊥BD于F,根据∠OBF=30°,求得OF=OB=,即OD最小值为;当点D在AC的上方时,作B关于y轴的对称点B',则同理可得OD最小值为.
    【详解】
    解:探究:如图②中,
    ∵∠BAC=∠DAE,∠ABC=∠ADE,
    ∴△DAE∽△BAC,∠DAB=∠EAC,
    ∴,
    ∴,
    ∴△ABD∽△ACE;
    应用:①当点D在AC的下方时,如图③−1中,
    作直线BD,由∠DAC=∠DCA=∠BAO=∠BOA=30°,可得△ABO∽△ADC,
    ∴,即,
    又∵∠BAD=∠OAC,
    ∴△ACO∽△ADB,
    ∴∠ABD=∠AOC=90°,
    ∵当OD⊥BE时,OD最小,
    过O作OF⊥BD于F,则△BOF为直角三角形,
    ∵A点的坐标是(0,6),AB=BO,∠ABO=120°,
    ∴易得OB=2,
    ∵∠ABO=120°,∠ABD=90°,
    ∴∠OBF=30°,
    ∴OF=OB=,
    即OD最小值为;
    当点D在AC的上方时,如图③−2中,
    作B关于y轴的对称点B',作直线DB',则同理可得:△ACO∽△ADB',
    ∴∠AB'D=∠AOC=90°,
    ∴当OD⊥B'E时,OD最小,
    过O作OF'⊥B'D于F',则△B'OF'为直角三角形,
    ∵A点的坐标是(0,6),AB'=B'O,∠AB'O=120°,
    ∴易得OB'=2,
    ∵∠AB'O=120°,∠AB'D=90°,
    ∴∠OB'F'=30°,
    ∴OF'=OB'=,
    即OD最小值为.
    故答案为:.
    本题属于相似形综合题,考查了相似三角形的判定与性质、含30°角的直角三角形的性质的综合应用,解决问题的关键是作辅助线,利用垂线段最短进行判断分析.解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.
    15、点B的坐标为,
    【解析】
    根据一次函数的性质,与y轴交于点B,即,得解;将A坐标代入解析式即可得解.
    【详解】
    当时,,点B的坐标为
    将点A的对应值,代入得,∴
    此题主要考查一次函数的性质,熟练掌握,即可解题.
    16、(1),见解析;(2)D(3,1),平移的距离是个单位,见解析;(3)存在满足条件的点Q,其坐标为或或,见解析.
    【解析】
    (1)根据AAS或ASA即可证明;
    (2)首先求直线AB的解析式,再求出出点D的坐标,再求出直线B′C′的解析式,求出点C′的坐标即可解决问题;
    (3)如图3中,作CP∥AB交y轴于P,作PQ∥CD交AB于Q,则四边形PCDQ是平行四边形,求出直线PC的解析式,可得点P坐标,点C向左平移1个单位,向上平移个单位得到P,推出点D向左平移1个单位,向上平移个单位得到Q,再根据对称性可得Q′、Q″的坐标.
    【详解】
    (1)∵,
    ∴,,
    ∴,
    ∵,

    (2)∵直线AB与x轴,y轴交于、两点
    ∴直线AB的解析式为
    ∵,
    ∴,设,则
    把代入得到,

    ∵,
    ∴直线BC的解析式为,
    设直线的解析式为,把代入得到
    ∴直线的解析式为,
    ∴,

    ∴平移的距离是个单位.
    (3)如图3中,作CP∥AB交y轴于P,作PQ∥CD交AB于Q,则四边形PCDQ是平行四边形,
    易知直线PC的解析式为y=-x+,
    ∴P(0,),
    ∵点C向左平移1个单位,向上平移个单位得到P,
    ∴点D向左平移1个单位,向上平移个单位得到Q,
    ∴Q(2,),
    当CD为对角线时,四边形PCQ″D是平行四边形,可得Q″,
    当四边形CDP′Q′为平行四边形时,可得Q′,
    综上所述, 存在满足条件的点Q,其坐标为或或
    本题考查一次函数综合题、平行四边形的判定和性质、全等三角形的判定和性质、待定系数法等知识,解题的关键是灵活运用待定系数法解决问题,学会用分类讨论的思想思考问题,学会用平移、对称等性质解决问题,属于中考压轴题.
    17、(1)y=x-4.(2)(-4,0).
    【解析】
    (1)把点(2,-3)代入解析式即可求出k;
    (2)先得出函数图像向上平移6单位的函数关系式,再令y=0,即可求出与x轴交点的坐标.
    【详解】
    解:(1)将x=2,y=-3代入y=kx-4,得-3=2k-4.∴k=.
    ∴一次函数的表达式为y=x-4.
    (2)将y=x-4的图像向上平移6个单位长度得y=x+2.
    当y=0时,x=-4.
    ∴平移后的图像与x轴交点的坐标为(-4,0).
    此题主要考察一次函数的解析式的求法与在坐标轴方向上的平移.
    18、(1)甲:50元/个,乙:70元/个; (2)最多可购买31个乙种足球.
    【解析】
    (1)设购买一个甲种足球需x元,由已知条件可得购买一个乙种足球需(x+20)元,由此可得共购买了个甲种足球,个乙种足球,根据购买的甲种足球的个数是乙种足球的2倍即可列出方程,解方程即可求得所求结果;
    (2)设第二次购买了y个乙种足球,则购买了(50-y)个甲种足球,根据(1)中所得两种足球的单价结合题意列出不等式,解不等式求得y的最大整数解即可.
    【详解】
    (1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,由题意得:

    解得:,
    经检验:是所列方程的解,
    ∴,
    答:购买一个甲种足球需50元,购买一个乙种足球需70元.
    (2)设这所学校再次购买y个乙种足球,则购买(50-y)个甲种足球,由题意得:
    50×(1+10% )×(50-y)+70×(1-10% )y≤3000 ,
    解得:y≤31.25 ,
    ∴y的最大整数解为31.
    答:最多可购买31个乙种足球.
    “读懂题意,找到题中的等量关系和不等关系,并由此设出合适的未知数,列出对应的方程和不等式”是解答本题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、y <1
    【解析】试题解析∵一次函数y=kx+b(k≠1)与x轴的交点坐标为(2,1),且图象经过第一、三象限,
    ∴y随x的增大而增大,
    ∴当x<2时,y<1.
    【点睛】本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠1)的图象为直线,当k>1,图象经过第一、三象限,y随x的增大而增大;当k<1,图象经过第二、四象限,y随x的增大而减小;直线与x轴的交点坐标为(-,1).
    20、,
    【解析】
    根据解一元二次方程的方法,即可得到答案.
    【详解】
    解:∵,
    ∴,
    ∴,,
    故答案为:,;
    本题考查了解一元二次方程的方法,解题的关键是掌握解方程的方法和步骤.
    21、L
    【解析】
    由前4分钟的进水量求得每分钟的进水量,后8分钟的进水量求得每分钟的出水量.
    【详解】
    前4分钟的每分钟的进水量为20÷4=5,
    每分钟的出水量为5-(30-20)÷8=.
    故答案为L.
    从图象中获取信息,首先要明确两坐标轴的实际意义,抓住交点,起点,终点等关键点,明确函数图象的变化趋势,变化快慢的实际意义.
    22、55
    【解析】
    利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm得出不等式求出即可.
    【详解】
    设长为8x,高为11x,
    由题意,得:19x+20≤115,
    解得:x≤5,
    故行李箱的高的最大值为:11x=55,
    答:行李箱的高的最大值为55厘米.
    此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.
    23、
    【解析】
    由一次函数图像过原点,可知其为正比例函数,所以,求出k值即可.
    【详解】
    解: 函数图像过原点
    该函数为正比例函数

    故答案为:
    本题考查了一次函数与正比例函数,一次函数,当时,为正比例函数,正比例函数图像过原点,正确理解正比例函数的概念及性质是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、甲种运动衫按原价销售件数的最小值为20 件.
    【解析】
    设甲种运动衫按原价销售件数为x 件,根据商店售完这两种运动衫至少可获利2460元列不等式求解即可.
    【详解】
    解:设甲种运动衫按原价销售件数为x 件.

    解得x ≥20,
    答:甲种运动衫按原价销售件数的最小值为20 件.
    此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键.
    25、.
    【解析】
    利用勾股定理求出BD,可得DE=BD=5,在Rt△BCE中,利用勾股定理求出BE即可.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴AB=DC=4,∠BCD=90°,
    ∴DE=BD==5,
    ∴CE=DE﹣CD=1,
    在Rt△BCE中,BE=,
    本题考查矩形的性质、等腰三角形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    26、(1).(2)3.
    【解析】
    由一次函数的图象经过,两点,代入解析式可得,解得,,因此一次函数关系式为:,
    根据一次函数关系式,把,代入可得:.
    【详解】
    解:一次函数的图象经过,两点,
    依题意得,
    解得,,
    ,
    当时,.
    本题主要考查待定系数法求一次函数关系式,解决本题的关键是要熟练掌握待定系数法求一次函数关系式.
    题号





    总分
    得分
    批阅人
    相关试卷

    2025届湖南省长沙市长雅中学九上数学开学达标检测模拟试题【含答案】: 这是一份2025届湖南省长沙市长雅中学九上数学开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届湖南省雅礼教育集团数学九上开学预测试题【含答案】: 这是一份2025届湖南省雅礼教育集团数学九上开学预测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖南长沙市雅礼洋湖实验中学九上数学开学统考模拟试题【含答案】: 这是一份2024年湖南长沙市雅礼洋湖实验中学九上数学开学统考模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map