年终活动
搜索
    上传资料 赚现金

    2025届湖北省随州市名校九上数学开学教学质量检测模拟试题【含答案】

    2025届湖北省随州市名校九上数学开学教学质量检测模拟试题【含答案】第1页
    2025届湖北省随州市名校九上数学开学教学质量检测模拟试题【含答案】第2页
    2025届湖北省随州市名校九上数学开学教学质量检测模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届湖北省随州市名校九上数学开学教学质量检测模拟试题【含答案】

    展开

    这是一份2025届湖北省随州市名校九上数学开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)点A(3,y1)和点B(﹣2,y2)都在直线y=﹣2x+3上,则y1和y2的大小关系是( )
    A.y1>y2B.y1<y2C.y1=y2D.不能确定
    2、(4分)某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56,这组数据的众数、中位数分别是( )
    A.53,53B.53,56C.56,53D.56,56
    3、(4分)下列式子从左边到右边的变形是因式分解的是( )
    A.B.
    C.D.
    4、(4分)下列交通标志既是中心对称图形又是轴对称图形的是( )
    A.B.C.D.
    5、(4分)已知点A(x1,y1),B(x2,y2)是一次函数y=(m﹣1)x+2﹣m上任意两点,且当x1<x2时,y1>y2,则这个函数的图象不经过( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    6、(4分)函数y=中自变量x的取值范围是( )
    A.x≠2B.x≠0C.x≠0且x≠2D.x>2
    7、(4分)若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的( )
    A.B.C.D.
    8、(4分)四边形的对角线相交于点,且,那么下列条件不能判断四边形为平行四边形的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)元旦期间,张老师开车从汕头到相距150千米的老家探亲,如果油箱里剩余油量(升)与行驶里程 (千米)之间是一次函数关系,其图象如图所示,那么张老师到达老家时,油箱里剩余油量是_______升.
    10、(4分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,且AP=2,∠BAC=60°,有一点F在边AB上运动,当运动到某一位置时△FAP面积恰好是△EAP面积的2倍,则此时AF的长是______.
    11、(4分)已知、为有理数,、分别表示的整数部分和小数部分,且,则 .
    12、(4分)如图,在平面直角坐标系中,ΔABC绕点D旋转得到ΔA’B’C’,则点D的坐标为____.
    13、(4分)如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某商厦进货员预测一种应季衬衫能畅销市场,就用万元购进这种衬衫,面市后果然供不应求.商厦又用万元购进第二批这种衬衫,所购数量是第一批进量的倍,但单价贵了元.商厦销售这种衬衫时每件定价元,最后剩下件按八折销售,很快售完.在这两笔生意中,商厦共盈利多少元?
    15、(8分)如图,在平面直角坐标系中,点的坐标为,点在轴的正半轴上.若点,在线段上,且为某个一边与轴平行的矩形的对角线,则称这个矩形为点、的“涵矩形”.下图为点,的“涵矩形”的示意图.
    (1)点的坐标为.
    ①若点的横坐标为,点与点重合,则点、的“涵矩形”的周长为__________.
    ②若点,的“涵矩形”的周长为,点的坐标为,则点,,中,能够成为点、的“涵矩形”的顶点的是_________.
    (2)四边形是点、的“涵矩形”,点在的内部,且它是正方形.
    ①当正方形的周长为,点的横坐标为时,求点的坐标.
    ②当正方形的对角线长度为时,连结.直接写出线段的取值范围.
    16、(8分)阅读理解:我们知道因式分解与整式乘法是互逆关系,那么逆用乘法公式,即,是否可以因式分解呢?当然可以,而且也很简单。如;.请你仿照上述方法分解因式:
    (1) (2)
    17、(10分)化简:
    (1)
    (2)(x﹣)÷
    18、(10分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.
    (1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
    (2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知则第个等式为____________.
    20、(4分)如图,矩形ABCD的对角线AC与BD交于点0,过点O作BD的垂线分别交AD、BC于E.F两点,若AC =2,∠DAO =300,则FB的长度为________ .
    21、(4分)甲、乙两个班级各20名男生测试“引体向上”,成绩如下图所示:设甲、乙两个班级男生“引体向上”个数的方差分别为S2甲和S2乙,则S2甲____S2乙.(填“>”,“<”或“=”)
    22、(4分)若点在轴上,则点的坐标为__________.
    23、(4分)如图,点P为函数y=(x>0)图象上一点过点P作x轴、y轴的平行线,分别与函数y(x>0)的图象交于点A,B,则△AOB的面积为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在矩形OABC中,点A在x轴上,点C在y轴上,点B的坐标是,将沿直线BD折叠,使得点C落在对角线OB上的点E处,折痕与OC交于点D.
    (1)求直线OB的解析式及线段OE的长.
    (2)求直线BD的解析式及点E的坐标.
    25、(10分)某蛋糕店为了吸引顾客,在A、B两种蛋糕中,轮流降低其中一种蛋糕价格,这样形成两种盈利模式,模式一:A种蛋糕利润每盒8元,B种蛋糕利润每盒15元;模式二:A种蛋糕利润每盒14元,B种蛋糕利润每盒11元每天限定销售A、B两种蛋糕共40盒,且都能售完,设每天销售A种蛋糕x盒
    (1)设按模式一销售A、B两种蛋糕所获利润为y1元,按模式二销售A、B两种蛋糕所获利润为y2元,分别求出y1、y2关于x的函数解析式;
    (2)在同一个坐标系内分别画出(1)题中的两个函数的图象;
    (3)若y始终表示y1、y2中较大的值,请问y是否为x的函数,并说说你的理由,并直接写出y的最小值.
    26、(12分)在△ABC中,
    (1)作线段AC的垂直平分线1,交AC于点O:(保留作图痕迹,请标明字母)
    (2)连接BO并延长至D,使得,连接DA、DC,证明四边形ABCD是矩形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    试题分析:先根据一次函数的解析式判断出函数的增减性,再比较出3与﹣1的大小,根据函数的增减性进行解答即可.
    解:∵直线y=﹣1x+3中,k=﹣1<0,
    ∴此函数中y随x的增大而减小,
    ∵3>﹣1,
    ∴y1<y1.
    故选B.
    考点:一次函数图象上点的坐标特征.
    2、D
    【解析】
    根据众数和中位数的定义求解可得.
    【详解】
    解:将数据重新排列为51,53,53,56,56,56,58,
    所以这组数据的中位数为56,众数为56,
    故选:D.
    本题主要考查众数和中位数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    3、B
    【解析】
    根据将多项式化为几个整式的乘积形式即为因式分解进行判断即可.
    【详解】
    解:A.左边是单项式,不是因式分解,
    B.左边是多项式,右边是最简的整式的积的形式,是因式分解;
    C.右边不是积的形式,不是因式分解,故错误;
    D、右边不是积的形式,不是因式分解,故错误;;
    故选:B.
    本题考查了因式分解的意义,解题的关键是正确理解因式分解的意义,本题属于基础题型.
    4、C
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A、不是轴对称图形,也不是中心对称图形,故此选项错误;
    B、不是轴对称图形,也不是中心对称图形,故此选项错误;
    C、是轴对称图形,也是中心对称图形,故此选项正确;
    D、不是轴对称图形,也不是中心对称图形,故此选项错误;
    故选C.
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    5、C
    【解析】
    先根据时,,得到随的增大而减小,所以的比例系数小于,那么,解不等式即可求解.
    【详解】
    时,,
    随的增大而减小,函数图象从左往右下降,



    即函数图象与轴交于正半轴,
    这个函数的图象不经过第三象限.
    故选:.
    本题考查一次函数的图象性质:当,随的增大而增大;当时,随的增大而减小.
    6、A
    【解析】
    根据分母不为0列式求值即可.
    【详解】
    由题意得x﹣1≠0,
    解得:x≠1.
    故选:A.
    此题主要考查函数的自变量取值,解题的关键是熟知分母不为零.
    7、B
    【解析】
    试题分析:∵一次函数y=kx+b的图象经过一、二、四象限
    ∴k0
    ∴直线y=bx-k经过一、二、三象限
    考点:一次函数的性质
    8、C
    【解析】
    根据题目条件结合平行四边形的判定方法:对角线互相平分的四边形是平行四边形分别进行分析即可.
    【详解】
    解:A、加上BO=DO可利用对角线互相平分的四边形是平行四边形,故此选项不合题意;
    B、加上条件AB∥CD可证明△AOB≌△COD可得BO=DO,可利用对角线互相平分的四边形是平行四边形,故此选项不合题意;
    C、加上条件AB=CD不能证明四边形是平行四边形,故此选项符合题意;
    D、加上条件∠ADB=∠DBC可利用ASA证明△AOD≌△COB,可证明BO=DO,可利用对角线互相平分的四边形是平行四边形,故此选项不合题意;
    故选:C.
    此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、20
    【解析】
    先运用待定系数法求出y与x之间的函数关系式,然后把x=150代入解析式就可以求出y的值,从而得出剩余的油量.
    【详解】
    解:设y与x之间的函数关系式为y=kx+b,由函数图象,得

    解得: ,
    则y=﹣0.1x+1.
    当x=150时,
    y=﹣0.1×150+1=20(升).
    故答案为20
    本题考查了一次函数的应用,正确读懂函数图像,利用待定系数法求函数解析式并代入求值是解题的关键.
    10、1.
    【解析】
    作PH⊥AB于H,根据角平分线的性质得到PH=PE,根据余弦的定义求出AE,根据三角形的面积公式计算即可.
    【详解】
    作PH⊥AB于H,
    ∵AD是∠BAC的平分线,PE⊥AC,PH⊥AB,
    ∴PH=PE,
    ∵P是∠BAC的平分线AD上一点,
    ∴∠EAP=30°,
    ∵PE⊥AC,
    ∴∠AEP=90°,
    ∴AE=AP×cs∠EAP=3,
    ∵△FAP面积恰好是△EAP面积的2倍,PH=PE,
    ∴AF=2AE=1,
    故答案为1.
    本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
    11、1.
    【解析】
    试题分析:∵2<<3,∴5>>1,∴m=1,n=,∵,∴,化简得:,等式两边相对照,因为结果不含,∴且,解得a=3,b=﹣2,∴2a+b=2×3﹣2=6﹣2=1.故答案为1.
    考点:估算无理数的大小.
    12、(3,0)
    【解析】
    连接AA′,BB′,分别作AA′,BB′的垂直平分线,两垂直平分线的交点即是旋转中心,然后写出坐标即可.
    【详解】
    连接旋转前后的对应两点,然后就会出现两条线段,分别作这两条线段的中垂线,两条中垂线相交的地方就是旋转中心.
    所以,旋转中心D的坐标为(3,0).
    故答案为:(3,0).
    本题考查了旋转的性质,解题的关键是能够根据题意确定旋转中心,难度不大.先找到这个旋转图形的两对对应点,连接对应两点,然后就会出现两条线段,分别作这两条线段的中垂线,两条中垂线的交点就是旋转中心.
    13、96
    【解析】
    试题解析:如图所示,连接AC ,在Rt△ADC中,CD=6,AD=8,则.
    在△ ABC中,AB=26,BC=24,AC=10,则 ,故△ ABC为直角三角形.
    .
    故本题的正确答案应为96.
    三、解答题(本大题共5个小题,共48分)
    14、商厦共盈利元.
    【解析】
    根据题意找出等量关系即第二批衬衫的单价-第一批衬衫的单价=4元,列出方程,可求得两批购进衬衫的数量;再设这笔生意盈利y元,可列方程为y+80000+176000=58(1+4000-150)+80%×58×150,可求出商厦的总盈利.
    【详解】
    设第一批购进x件衬衫,则第二批购进了2x件,
    依题意可得:,
    解得x=1.
    经检验x=1是方程的解,
    故第一批购进衬衫1件,第二批购进了4000件.
    设这笔生意盈利y元,
    可列方程为:y+80000+176000=58(1+4000-150)+80%×58×150,
    解得y=2.
    答:在这两笔生意中,商厦共盈利2元.
    本题主要考查分式方程的应用,解题的关键是找出题中的等量关系.注意:求出的结果必须检验且还要看是否符合题意
    15、(1)①. ②;(2)①点的坐标为或.②.
    【解析】
    (1)①利用A、B的坐标求出直线AB的解析式,再将P点横坐标代入,计算即可得点、的“新矩形”的周长;②由直线AB的解析式判定是否经过E、F、G三点,发现只经过了F(1,2),能够成为点、的“涵矩形”的顶点的是F(1,2)
    (2)①①根据正方形的性质可得出∠ABO=45°,结合点A的坐标可得出点B的坐标及直线AB的函数表达式,由的横坐标为,可得出点P的坐标,再由正方形的周长可得出点Q的坐标,进而可得出点Q的坐标;②由正方形的对角线长度为,可得正方形的边长为1,由直线AB的解析式y=-x+6可知M点的运动轨迹是直线y=-x+5,由点在的内部,x的取值范围是0

    相关试卷

    2025届贵州省六盘水市名校数学九上开学教学质量检测模拟试题【含答案】:

    这是一份2025届贵州省六盘水市名校数学九上开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年上海市黄浦区名校数学九上开学教学质量检测模拟试题【含答案】:

    这是一份2024年上海市黄浦区名校数学九上开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖北省随州市曾都区九上数学开学统考模拟试题【含答案】:

    这是一份2024年湖北省随州市曾都区九上数学开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map