2025届湖北省随州市名校九上数学开学教学质量检测模拟试题【含答案】
展开
这是一份2025届湖北省随州市名校九上数学开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)点A(3,y1)和点B(﹣2,y2)都在直线y=﹣2x+3上,则y1和y2的大小关系是( )
A.y1>y2B.y1<y2C.y1=y2D.不能确定
2、(4分)某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56,这组数据的众数、中位数分别是( )
A.53,53B.53,56C.56,53D.56,56
3、(4分)下列式子从左边到右边的变形是因式分解的是( )
A.B.
C.D.
4、(4分)下列交通标志既是中心对称图形又是轴对称图形的是( )
A.B.C.D.
5、(4分)已知点A(x1,y1),B(x2,y2)是一次函数y=(m﹣1)x+2﹣m上任意两点,且当x1<x2时,y1>y2,则这个函数的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
6、(4分)函数y=中自变量x的取值范围是( )
A.x≠2B.x≠0C.x≠0且x≠2D.x>2
7、(4分)若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的( )
A.B.C.D.
8、(4分)四边形的对角线相交于点,且,那么下列条件不能判断四边形为平行四边形的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)元旦期间,张老师开车从汕头到相距150千米的老家探亲,如果油箱里剩余油量(升)与行驶里程 (千米)之间是一次函数关系,其图象如图所示,那么张老师到达老家时,油箱里剩余油量是_______升.
10、(4分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,且AP=2,∠BAC=60°,有一点F在边AB上运动,当运动到某一位置时△FAP面积恰好是△EAP面积的2倍,则此时AF的长是______.
11、(4分)已知、为有理数,、分别表示的整数部分和小数部分,且,则 .
12、(4分)如图,在平面直角坐标系中,ΔABC绕点D旋转得到ΔA’B’C’,则点D的坐标为____.
13、(4分)如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某商厦进货员预测一种应季衬衫能畅销市场,就用万元购进这种衬衫,面市后果然供不应求.商厦又用万元购进第二批这种衬衫,所购数量是第一批进量的倍,但单价贵了元.商厦销售这种衬衫时每件定价元,最后剩下件按八折销售,很快售完.在这两笔生意中,商厦共盈利多少元?
15、(8分)如图,在平面直角坐标系中,点的坐标为,点在轴的正半轴上.若点,在线段上,且为某个一边与轴平行的矩形的对角线,则称这个矩形为点、的“涵矩形”.下图为点,的“涵矩形”的示意图.
(1)点的坐标为.
①若点的横坐标为,点与点重合,则点、的“涵矩形”的周长为__________.
②若点,的“涵矩形”的周长为,点的坐标为,则点,,中,能够成为点、的“涵矩形”的顶点的是_________.
(2)四边形是点、的“涵矩形”,点在的内部,且它是正方形.
①当正方形的周长为,点的横坐标为时,求点的坐标.
②当正方形的对角线长度为时,连结.直接写出线段的取值范围.
16、(8分)阅读理解:我们知道因式分解与整式乘法是互逆关系,那么逆用乘法公式,即,是否可以因式分解呢?当然可以,而且也很简单。如;.请你仿照上述方法分解因式:
(1) (2)
17、(10分)化简:
(1)
(2)(x﹣)÷
18、(10分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知则第个等式为____________.
20、(4分)如图,矩形ABCD的对角线AC与BD交于点0,过点O作BD的垂线分别交AD、BC于E.F两点,若AC =2,∠DAO =300,则FB的长度为________ .
21、(4分)甲、乙两个班级各20名男生测试“引体向上”,成绩如下图所示:设甲、乙两个班级男生“引体向上”个数的方差分别为S2甲和S2乙,则S2甲____S2乙.(填“>”,“<”或“=”)
22、(4分)若点在轴上,则点的坐标为__________.
23、(4分)如图,点P为函数y=(x>0)图象上一点过点P作x轴、y轴的平行线,分别与函数y(x>0)的图象交于点A,B,则△AOB的面积为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在矩形OABC中,点A在x轴上,点C在y轴上,点B的坐标是,将沿直线BD折叠,使得点C落在对角线OB上的点E处,折痕与OC交于点D.
(1)求直线OB的解析式及线段OE的长.
(2)求直线BD的解析式及点E的坐标.
25、(10分)某蛋糕店为了吸引顾客,在A、B两种蛋糕中,轮流降低其中一种蛋糕价格,这样形成两种盈利模式,模式一:A种蛋糕利润每盒8元,B种蛋糕利润每盒15元;模式二:A种蛋糕利润每盒14元,B种蛋糕利润每盒11元每天限定销售A、B两种蛋糕共40盒,且都能售完,设每天销售A种蛋糕x盒
(1)设按模式一销售A、B两种蛋糕所获利润为y1元,按模式二销售A、B两种蛋糕所获利润为y2元,分别求出y1、y2关于x的函数解析式;
(2)在同一个坐标系内分别画出(1)题中的两个函数的图象;
(3)若y始终表示y1、y2中较大的值,请问y是否为x的函数,并说说你的理由,并直接写出y的最小值.
26、(12分)在△ABC中,
(1)作线段AC的垂直平分线1,交AC于点O:(保留作图痕迹,请标明字母)
(2)连接BO并延长至D,使得,连接DA、DC,证明四边形ABCD是矩形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
试题分析:先根据一次函数的解析式判断出函数的增减性,再比较出3与﹣1的大小,根据函数的增减性进行解答即可.
解:∵直线y=﹣1x+3中,k=﹣1<0,
∴此函数中y随x的增大而减小,
∵3>﹣1,
∴y1<y1.
故选B.
考点:一次函数图象上点的坐标特征.
2、D
【解析】
根据众数和中位数的定义求解可得.
【详解】
解:将数据重新排列为51,53,53,56,56,56,58,
所以这组数据的中位数为56,众数为56,
故选:D.
本题主要考查众数和中位数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
3、B
【解析】
根据将多项式化为几个整式的乘积形式即为因式分解进行判断即可.
【详解】
解:A.左边是单项式,不是因式分解,
B.左边是多项式,右边是最简的整式的积的形式,是因式分解;
C.右边不是积的形式,不是因式分解,故错误;
D、右边不是积的形式,不是因式分解,故错误;;
故选:B.
本题考查了因式分解的意义,解题的关键是正确理解因式分解的意义,本题属于基础题型.
4、C
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、不是轴对称图形,也不是中心对称图形,故此选项错误;
B、不是轴对称图形,也不是中心对称图形,故此选项错误;
C、是轴对称图形,也是中心对称图形,故此选项正确;
D、不是轴对称图形,也不是中心对称图形,故此选项错误;
故选C.
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
5、C
【解析】
先根据时,,得到随的增大而减小,所以的比例系数小于,那么,解不等式即可求解.
【详解】
时,,
随的增大而减小,函数图象从左往右下降,
,
,
,
即函数图象与轴交于正半轴,
这个函数的图象不经过第三象限.
故选:.
本题考查一次函数的图象性质:当,随的增大而增大;当时,随的增大而减小.
6、A
【解析】
根据分母不为0列式求值即可.
【详解】
由题意得x﹣1≠0,
解得:x≠1.
故选:A.
此题主要考查函数的自变量取值,解题的关键是熟知分母不为零.
7、B
【解析】
试题分析:∵一次函数y=kx+b的图象经过一、二、四象限
∴k0
∴直线y=bx-k经过一、二、三象限
考点:一次函数的性质
8、C
【解析】
根据题目条件结合平行四边形的判定方法:对角线互相平分的四边形是平行四边形分别进行分析即可.
【详解】
解:A、加上BO=DO可利用对角线互相平分的四边形是平行四边形,故此选项不合题意;
B、加上条件AB∥CD可证明△AOB≌△COD可得BO=DO,可利用对角线互相平分的四边形是平行四边形,故此选项不合题意;
C、加上条件AB=CD不能证明四边形是平行四边形,故此选项符合题意;
D、加上条件∠ADB=∠DBC可利用ASA证明△AOD≌△COB,可证明BO=DO,可利用对角线互相平分的四边形是平行四边形,故此选项不合题意;
故选:C.
此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、20
【解析】
先运用待定系数法求出y与x之间的函数关系式,然后把x=150代入解析式就可以求出y的值,从而得出剩余的油量.
【详解】
解:设y与x之间的函数关系式为y=kx+b,由函数图象,得
,
解得: ,
则y=﹣0.1x+1.
当x=150时,
y=﹣0.1×150+1=20(升).
故答案为20
本题考查了一次函数的应用,正确读懂函数图像,利用待定系数法求函数解析式并代入求值是解题的关键.
10、1.
【解析】
作PH⊥AB于H,根据角平分线的性质得到PH=PE,根据余弦的定义求出AE,根据三角形的面积公式计算即可.
【详解】
作PH⊥AB于H,
∵AD是∠BAC的平分线,PE⊥AC,PH⊥AB,
∴PH=PE,
∵P是∠BAC的平分线AD上一点,
∴∠EAP=30°,
∵PE⊥AC,
∴∠AEP=90°,
∴AE=AP×cs∠EAP=3,
∵△FAP面积恰好是△EAP面积的2倍,PH=PE,
∴AF=2AE=1,
故答案为1.
本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
11、1.
【解析】
试题分析:∵2<<3,∴5>>1,∴m=1,n=,∵,∴,化简得:,等式两边相对照,因为结果不含,∴且,解得a=3,b=﹣2,∴2a+b=2×3﹣2=6﹣2=1.故答案为1.
考点:估算无理数的大小.
12、(3,0)
【解析】
连接AA′,BB′,分别作AA′,BB′的垂直平分线,两垂直平分线的交点即是旋转中心,然后写出坐标即可.
【详解】
连接旋转前后的对应两点,然后就会出现两条线段,分别作这两条线段的中垂线,两条中垂线相交的地方就是旋转中心.
所以,旋转中心D的坐标为(3,0).
故答案为:(3,0).
本题考查了旋转的性质,解题的关键是能够根据题意确定旋转中心,难度不大.先找到这个旋转图形的两对对应点,连接对应两点,然后就会出现两条线段,分别作这两条线段的中垂线,两条中垂线的交点就是旋转中心.
13、96
【解析】
试题解析:如图所示,连接AC ,在Rt△ADC中,CD=6,AD=8,则.
在△ ABC中,AB=26,BC=24,AC=10,则 ,故△ ABC为直角三角形.
.
故本题的正确答案应为96.
三、解答题(本大题共5个小题,共48分)
14、商厦共盈利元.
【解析】
根据题意找出等量关系即第二批衬衫的单价-第一批衬衫的单价=4元,列出方程,可求得两批购进衬衫的数量;再设这笔生意盈利y元,可列方程为y+80000+176000=58(1+4000-150)+80%×58×150,可求出商厦的总盈利.
【详解】
设第一批购进x件衬衫,则第二批购进了2x件,
依题意可得:,
解得x=1.
经检验x=1是方程的解,
故第一批购进衬衫1件,第二批购进了4000件.
设这笔生意盈利y元,
可列方程为:y+80000+176000=58(1+4000-150)+80%×58×150,
解得y=2.
答:在这两笔生意中,商厦共盈利2元.
本题主要考查分式方程的应用,解题的关键是找出题中的等量关系.注意:求出的结果必须检验且还要看是否符合题意
15、(1)①. ②;(2)①点的坐标为或.②.
【解析】
(1)①利用A、B的坐标求出直线AB的解析式,再将P点横坐标代入,计算即可得点、的“新矩形”的周长;②由直线AB的解析式判定是否经过E、F、G三点,发现只经过了F(1,2),能够成为点、的“涵矩形”的顶点的是F(1,2)
(2)①①根据正方形的性质可得出∠ABO=45°,结合点A的坐标可得出点B的坐标及直线AB的函数表达式,由的横坐标为,可得出点P的坐标,再由正方形的周长可得出点Q的坐标,进而可得出点Q的坐标;②由正方形的对角线长度为,可得正方形的边长为1,由直线AB的解析式y=-x+6可知M点的运动轨迹是直线y=-x+5,由点在的内部,x的取值范围是0
相关试卷
这是一份2025届贵州省六盘水市名校数学九上开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年上海市黄浦区名校数学九上开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年湖北省随州市曾都区九上数学开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。