2025届合肥市蜀山区数学九年级第一学期开学检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)抛物线()的部分图象如图所示,与轴的一个交点坐标为,抛物线的对称轴是,下列结论是:①;②;③方程有两个不相等的实数根;④;⑤若点在该抛物线上,则,其中正确的个数有( )
A.1个B.2个C.3个D.4个
2、(4分)在一组数据3,4,4,6,8中,下列说法错误的是( )
A.它的众数是4B.它的平均数是5
C.它的中位数是5D.它的众数等于中位数
3、(4分)某校男子足球队年龄分布条形图如图所示,该球队年龄的众数和中位数分别是
A.B.
C.D.
4、(4分)某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为( )
A.200(1+x)2=1000
B.200+200×2x=1000
C.200+200×3x=1000
D.200[1+(1+x)+(1+x)2]=1000
5、(4分)今年,重庆市南岸区广阳镇一果农李灿收获枇杷20吨,桃子12吨,现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.李灿安排甲、乙两种货车一次性地将水果运到销售地的方案数有( )
A.1种B.2种C.3种D.4种
6、(4分)某商品降价后欲恢复原价,则提价的百分数为( ).
A.B.C.D.
7、(4分)小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC、BD的中点重叠并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是( )
A.对角线互相平分的四边形是平行四边形
B.一组对边平行且相等的四边形是平行四边形
C.两组对边分别相等的四边形是平行四边形
D.两组对边分别平行的四边形是平行四边形
8、(4分)如图,在平行四边形ABCO中,A(1,2),B(5,2),将平行四边形绕O点逆时针方向旋转90°得平行四边形ABCO,则点B的坐标是( )
A.(-2,4)B.(-2,5)C.(-1,5)D.(-1,4)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,,,,则__________.
10、(4分)在正方形ABCD中,E是BC边延长线上的一点,且CE=BD,则∠AEC=_____.
11、(4分)写出一个比2大比3小的无理数(用含根号的式子表示)_____.
12、(4分)若△ABC∽△DEF, △ABC与△DEF的相似比为1∶2,则△ABC与△DEF的周长比为________.
13、(4分) “龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:
①“龟兔再次赛跑”的路程为1000米;
②兔子和乌龟同时从起点出发;
③乌龟在途中休息了10分钟;
④兔子在途中750米处追上乌龟.
其中正确的说法是 .(把你认为正确说法的序号都填上)
三、解答题(本大题共5个小题,共48分)
14、(12分)八年级下册教材第69页习题14:四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.求证:AE=EF.这道题对大多数同学来说,印象深刻数学课代表在做完这题后,她把这题稍作改动,如图,四边形ABCD是正方形,点E是边BC的三等分点,∠AEF=90°,且EF交正方形外角的平分线CF于点F,那么AE=EF还成立吗?如果成立,给予证明,如果不成立,请说明理由.
15、(8分)电话计费问题,下表中有两种移动电话计费方式:
温馨揭示:方式一:月使用费固定收(月收费:38元/月);主叫不超限定时间不再收费(80分钟以内,包括80分钟);主叫超时部分加收超时费(超过部分0.15元/);被叫免费。
方式二:月使用费0元(无月租费);主叫限定时间0分钟;主叫每分钟0.35元/;被叫免费。
(1)设一个月内用移动电话主叫时间为,方式一计费元,方式二计费元。写出和关于的函数关系式。
(2)在平面直角坐标系中画出(1)中的两个函数图象,记两函数图象交点为点,则点的坐标为_____________________(直接写出坐标,并在图中标出点)。
(3)根据(2)中函数图象,请直接写出如何根据每月主叫时间选择省钱的计费方式。
16、(8分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.
求证:(1)△ABE≌△CDF;
(2)四边形BFDE是平行四边形.
17、(10分)如图,在中,,E为CA延长线上一点,D为AB上一点,F为外一点且连接DF,BF.
(1)当的度数是多少时,四边形ADFE为菱形,请说明理由:
(2)当AB= 时,四边形ACBF为正方形(请直接写出)
18、(10分)先化简,再求值:,其中x=1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知平行四边形ABCD中,∠A﹣∠B=50°,则∠C=_____.
20、(4分)如图,在▱ABCD中(AD>AB),用尺规作图作射线BP交AD于点E,若∠D=50°,则∠AEB=___度.
21、(4分)已知菱形的边长为6cm,一个内角为60°,则菱形的面积为______cm1.
22、(4分)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择_________.
23、(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B5的坐标是_____________ 。
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E
(1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的长.
25、(10分)有一个等腰三角形的周长为。
(1)写出底边关于腰长的函数关系式;
(2)写出自变量的取值范围。
26、(12分)如图,四边形ABCD中, BA=BC, DA=DC,我们把这种两组邻边分别相等的四边形叫做“筝形”, 其对角线AC、BD交于点M,请你猜想关于筝形的对角线的一条性质,并加以证明.
猜想:
证明:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据二次函数的对称性补全图像,再根据二次函数的性质即可求解.
【详解】
如图,∵与轴的一个交点坐标为,抛物线的对称轴是,
实验求出二次函数与x轴的另一个交点为(-2,0)
故可补全图像如下,
由图可知a<0,c>0,对称轴x=1,故b>0,
∴,①错误,
②对称轴x=1,故x=-,∴,正确;
③如图,作y=2图像,与函数有两个交点,∴方程有两个不相等的实数根,正确;④∵x=-2时,y=0,即,正确;⑤∵抛物线的对称轴为x=1,故点在该抛物线上,则,正确;
故选D
此题主要考查二次函数的图像,解题的关键是熟知二次函数的对称性.
2、C
【解析】
一组数据中出现次数最多的数为众数;
将这组数据从小到大的顺序排列,处于中间位置的一个数或两个数的平均数是中位数.
根据平均数的定义求解.
【详解】
在这一组数据中4是出现次数最多的,故众数是4;
将这组数据已经从小到大的顺序排列,处于中间位置的那个数是4,那么由中位数的定义可知,这组数据的中位数是4;
由平均数的公式的,=(3+4+4+6+8)÷5=5,平均数为5,
故选C.
本题为统计题,考查平均数、众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
3、B
【解析】
根据条形图,观察可得15岁的人数最多,因此可得众数是15,将岁数从大到小排列,根据最中间的那个数就是中位数.
【详解】
首先根据条形图可得15岁的人数最多,
因此可得众数是15;
将岁数从大到小排列,根据条形图可知有人数:,
因此可得最中间的11和12个的平均值是中位数,11和12个人都是15岁,
故可得中位数是15.
本题主要考查众数和中位数的计算,是数据统计的基本知识,应当熟练掌握.
4、D
【解析】
根据增长率问题公式即可解决此题,二月为200(1+x),三月为200(1+x)2,三个月相加即得第一季度的营业额.
【详解】
解:∵一月份的营业额为200万元,平均每月增长率为x,
∴二月份的营业额为200×(1+x),
∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,
∴可列方程为200+200×(1+x)+200×(1+x)2=1,
即200[1+(1+x)+(1+x)2]=1.
故选:D.
此题考察增长率问题类一元二次方程的应用,注意:第一季度指一、二、三月的总和.
5、C
【解析】
设租用甲种货车x辆,则租用乙种货车(8-x)辆,根据8辆货车可一次将枇杷20吨、桃子12吨运完,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为整数即可得出结论.
【详解】
解:设租用甲种货车x辆,则租用乙种货车(8-x)辆,
依题意,得:
解得:2≤x≤1.
∵x为整数,
∴x=2,3,1,
∴共有3种租车方案.
故选:C.
本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.
6、C
【解析】
解:设原价为元,提价百分数为,则,解得,故选.
7、A
【解析】
根据对角线互相平分的四边形是平行四边形即可得出结论.
【详解】
解:∵O是AC、BD的中点,
∴OA=OC,OB=OD,
∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形);
故选:A.
本题考查了平行四边形的判定定理;熟练掌握平行四边形的判定定理是解题的关键.
8、B
【解析】
直接利用旋转的性质B点对应点到原点距离相同,进而得出坐标.
【详解】
解:∵将▱ABCO绕O点逆时针方向旋转90°到▱A′B′C′O的位置,B(5,2),
∴点B′的坐标是:(-2,5).
故选:B.
此题主要考查了平行四边形的性质以及旋转的性质,正确掌握平行四边形的性质是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、30.
【解析】
利用勾股逆定理推出∠C=90°,再利用三角形的面积公式,进行计算即可.
【详解】
解:∵,,
又∵
∴
∴∠C=90°
∴
故答案为:30
本题考查了勾股逆定理以及三角形的面积公式,掌握勾股定理是解题的关键.
10、22.5°
【解析】
连接AC,由正方形性质可知BD=AC,∠ACB=45°,由CE=BD得AC=CE,所以∠CAE=∠CEA,因为∠ACB=∠CAE+∠AEC=2∠AEC=45°,即可得答案.
【详解】
如图:连接AC,
∵ABCD是正方形
∴AC=BD,∠ACB=45°,
∵CE=BD
∴∠CAE=∠CEA,
∵∠ACB=∠CAE+∠AEC=2∠AEC=45°
∴∠AEC=22.5°,
故答案为:22.5°
本题考查正方形的性质,熟练掌握相关知识是解题关键.
11、
【解析】
【分析】先利用4<5<9,再根据算术平方根的定义有2<<3,这样就可得到满足条件的无理数.
【详解】∵4<5<9,
∴2<<3,
即为比2大比3小的无理数.
故答案为:.
【点睛】本题考查了估算无理数的大小,熟练掌握利用完全平方数和算术平方根对无理数的大小进行估算是解题的关键.
12、1:1.
【解析】
根据相似三角形的周长的比等于相似比得出.
【详解】
解:∵△ABC∽△DEF,△ABC与△DEF的相似比为1:1,
∴△ABC与△DEF的周长比为1:1.
故答案为:1:1.
本题主要考查了相似三角形的性质:相似三角形(多边形)的周长的比等于相似比.
13、①③④
【解析】
根据图象可知:
龟兔再次赛跑的路程为1000米,故①正确;
兔子在乌龟跑了40分钟之后开始跑,故②错误;
乌龟在30~40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;
y1=20x﹣200(40≤x≤60),y2=100x﹣4000(40≤x≤50),当y1=y2时,兔子追上乌龟,
此时20x﹣200=100x﹣4000,解得:x=47.5,
y1=y2=750米,即兔子在途中750米处追上乌龟,故④正确,
综上可得①③④正确.
三、解答题(本大题共5个小题,共48分)
14、成立,理由见解析.
【解析】
取AB的三等分点,连接GE,由点E是边BC的三等分点,得到BE=BG,根据正方形的性质得到AG=EC,根据全等三角形的性质即可得到结论.
【详解】
证明:取AB的三等分点,连接GE,
∵点E是边BC的三等分点,
∴BE=BG,
∵四边形ABCD是正方形,
∴AG=EC,
∵△EBG为等腰直角三角形,可知∠AGE=135°,
∵∠AEF=90°,
∠BEA+∠FEC=90°,
∠BEA+∠BAE=90°,
∴∠BAE=∠FEC.
∴△AGE≌△ECF(ASA),
∴AE=EF.
此题考查正方形的性质,三角形全等的判定与性质,角平分线的性质等知识点,注意结合图形,灵活作出辅助线解决问题.
15、(1)当时,,当时,,;(2)点的坐标为,见解析;(3)当每月主叫时间小于130分钟时选择方式二省钱;当每月主叫时间等于130分钟时两种方式都一样;当每月主叫时间大于130分钟时选择方式一省钱.
【解析】
(1)根据题意即可写出两种资费的关系式;
(2)根据列表、描点、连线即可画出函数图像,再求出交点坐标A;
(3)根据函数图像的性质即可求解.
【详解】
解:(1)方式一:当时,,
当时,;
方式二:;
或解:(1)方式一:
化简,得;
方式二:;
(2)
点的坐标为
(3)由图象可得,
当每月主叫时间小于130分钟时选择方式二省钱;
当每月主叫时间等于130分钟时两种方式都一样;
当每月主叫时间大于130分钟时选择方式一省钱。
此题主要考查一次函数的应用,解题的关键是根据题意写出函数关系式.
16、(1)见解析;(2)见解析;
【解析】
(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.
(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.
【详解】
证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,
在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,
∴△ABE≌△CDF(SAS).
(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.
∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.
∴四边形BFDE是平行四边形.
17、 (1)当时,四边形ADFE为菱形,理由详见解析; (2).
【解析】
(1)当∠CAB=60°时,四边形ADFE为菱形;由平行线的性质可证∠AFE=∠DAF,∠AEF=∠CAB=60°,可得△AEF,△AFD都是等边三角形,可得AE=AF=AD=EF=FD,即可得结论.
(2)由正方形的性质可求解.
【详解】
(1)当∠CAB=60°时,四边形ADFE为菱形,
理由如下:
∵AE=AF=AD
∴∠AEF=∠AFE,
∵EF∥AB
∴∠AFE=∠DAF,∠AEF=∠CAB=60°
∴∠FAD=60°
∴△AEF,△AFD都是等边三角形
∴AE=AF=AD=EF=FD
∴四边形ADFE为菱形
(2)若四边形ACBF为正方形
∴AC=BC=1,∠ACB=90°
∴AB=
∴当AB=时,四边形ACBF为正方形
故答案为
本题考查了正方形的判定和性质,菱形的判定和性质,等腰三角形的性质,灵活运用这些性质解决问题是本题的关键.
18、,
【解析】
根据分式的减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
【详解】
解:-
=
=
=
=
当x=1时,原式=
本题考查分式的化简求值,解答本题的关键是明确分式的基本性质和减法法则.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、115°.
【解析】
根据平行四边形的邻角互补可得∠A+∠B=180°,和已知∠A﹣∠B=50°,就可建立方程求出∠A的度数,再由平行四边形的性质即可得∠C的度数.
【详解】
在平行四边形ABCD中,∠A+∠B=180°,
又∵∠A﹣∠B=50°,
把这两个式子相加即可求出∠A =115°,
∴∠A=∠C=115°,
故答案为115°.
本题考查了平行四边形的性质:邻角互补,对角相等,熟知性质是解题的关键.
20、1.
【解析】
由平行四边形的性质可知:AD∥BC,推出∠AEB=∠EBC,求出∠EBC即可;
【详解】
∵四边形ABCD是平行四边形,
∴∠ABC=∠D=50°,AD∥BC,
由作图可知,BE平分∠ABC,
∴∠EBC=∠ABC=1°,
∴∠AEB=∠EBC=1°,
故答案为1.
本题考查平行四边形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
21、18
【解析】
由题意可知菱形的较短的对角线与菱形的一组边组成一个等边三角形,根据勾股定理可求得另一条对角线的长,再根据菱形的面积等于两对角线乘积的一半即可求得其面积.
解:因为菱形的一个内角是110°,则相邻的内角为60°从而得到较短的对角线与菱形的一组邻边构成一个等边三角形,
即较短的对角线为6cm,根据勾股定理可求得较长的对角线的长为6cm,
则这个菱形的面积=×6×6=18cm1,
故答案为18.
22、丁;
【解析】
试题解析:丁的平均数最大,方差最小,成绩最稳当,
所以选丁运动员参加比赛.
故答案为丁.
23、(31,16)
【解析】
首先由B1的坐标为(1,1),点B2的坐标为(3,2),可得正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,即可求得A1的坐标是(0,1),A2的坐标是:(1,2),然后又待定系数法求得直线A1A2的解析式,由解析式即可求得点A3的坐标,继而可得点B3的坐标,观察可得规律Bn的坐标是(2n-1,2n-1).
【详解】
∵B1的坐标为(1,1),点B2的坐标为(3,2)
∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2
∴A1的坐标是(0,1),A2的坐标是:(1,2)
设直线A1A2的解析式为:y=kx+b
∴
解得:
∴直线A1A2的解析式是:y=x+1
∵点B2的坐标为(3,2)
∴点A3的坐标为(3,4)
∴点B3的坐标为(7,4)
∴Bn的横坐标是:2n-1,纵坐标是:2n−1
∴Bn的坐标是(2n−1,2n−1)
故点B5的坐标为(31,16).
此题考查了待定系数法求解一次函数的解析式以及正方形的性质,在解题中注意掌握数形结合思想与方程思想的应用.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析(2)BD=2
【解析】
解:(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,
∴CD=ED,∠DEA=∠C=90°.
∵在Rt△ACD和Rt△AED中,,
∴Rt△ACD≌Rt△AED(HL).
(2)∵Rt△ACD≌Rt△AED ,CD=1,∴DC=DE=1.
∵DE⊥AB,∴∠DEB=90°.
∵∠B=30°,∴BD=2DE=2.
(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.
(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.
25、(1); (2)
【解析】
(1)等腰三角形的两个腰是相等的,根据题中条件即可列出腰长和底边长的关系式.
(2)根据2腰长的和大于底边长及底边长为正数可得自变量的取值.
【详解】
(1)∵等腰三角形的两腰相等,周长为30,
∴2x+y=30,
∴底边长y与腰长x的函数关系式为:y=-2x+30;
(2)∵两边之和大于第三边,
∴2x>y,
∴x>,
∵y>0,
∴x<1,
x的取值范围是:7.5<x<1.
本题主要考查对于一次函数关系式的掌握以及三角形性质的应用,判断出等腰三角形腰长的取值范围是解决本题的难点.
26、筝形有一条对角线平分一组对角,即BD平分∠ABC且BD平分∠ADC;证明见解析
【解析】
利用SSS定理证明△ABD≌△CBD,可得∠ABD=∠CBD,∠ADB=∠CDB,从而可写出关于筝形的对角线的一条性质,筝形有一条对角线平分一组对角.
【详解】
解:筝形有一条对角线平分一组对角,即BD平分∠ABC且BD平分∠ADC
证明:∵在△ABD和△CBD中
BA=BC,DA=DC,BD=BD
∴△ABD≌△CBD(SSS)
∴∠ABD=∠CBD,∠ADB=∠CDB
即BD平分∠ABC,且BD平分∠ADC.
本题考查全等三角形的判定及性质,掌握SSS定理及全等三角形对应角相等是本题的解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
甲
乙
丙
丁
平均数
9.14
9.15
9.14
9.15
方差
6.6
6.8
6.7
6.6
2025届安徽省合肥市蜀山区琥珀中学九年级数学第一学期开学达标测试试题【含答案】: 这是一份2025届安徽省合肥市蜀山区琥珀中学九年级数学第一学期开学达标测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年安徽省合肥市中学国科技大附中数学九年级第一学期开学复习检测模拟试题【含答案】: 这是一份2024年安徽省合肥市中学国科技大附中数学九年级第一学期开学复习检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年安徽省合肥市蜀山区数学九年级第一学期开学经典模拟试题【含答案】: 这是一份2024年安徽省合肥市蜀山区数学九年级第一学期开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。