|试卷下载
搜索
    上传资料 赚现金
    2025届北京市西城区名校数学九年级第一学期开学考试试题【含答案】
    立即下载
    加入资料篮
    2025届北京市西城区名校数学九年级第一学期开学考试试题【含答案】01
    2025届北京市西城区名校数学九年级第一学期开学考试试题【含答案】02
    2025届北京市西城区名校数学九年级第一学期开学考试试题【含答案】03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届北京市西城区名校数学九年级第一学期开学考试试题【含答案】

    展开
    这是一份2025届北京市西城区名校数学九年级第一学期开学考试试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)某水果超市从生产基地以4元/千克购进一种水果,在运输和销售过程中有10%的自然损耗.假设不计其他费用,超市要使销售这种水果的利润不低于35%,那么售价至少为( )
    A.5.5元/千克B.5.4元/千克C.6.2元/千克D.6元/千克
    2、(4分)用配方法解方程,方程可变形为( )
    A.x  12 4B.x  12  4C.x  12  2D.x  12 2
    3、(4分)下列事件中,是必然事件的为( )
    A.明天会下雨
    B.x是实数,x2<0
    C.两个奇数之和为偶数
    D.异号两数相加,和为负数
    4、(4分)等腰三角形的周长为20,设底边长为,腰长为,则关于的函数解析式为(为自变量)( )
    A.B.C.D.
    5、(4分)下列二次根式中,可与合并的二次根式是
    A.B.C.D.
    6、(4分)用配方法解方程时,配方变形结果正确的是( )
    A.B.C.D.
    7、(4分)下列由左到右变形,属于因式分解的是
    A.B.
    C.D.
    8、(4分)如图所示,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A'点,连接A'B,则线段A'B与线段AC的关系是 ( )
    A.垂直B.相等C.平分D.平分且垂直
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠ADM的度数是_____.
    10、(4分)菱形的两条对角线长分别为3和4,则菱形的面积是_____.
    11、(4分)若方程的解是正数,则m的取值范围_____.
    12、(4分)如图,平行四边形ABCD中,,,AE平分交BC于点E,则CE的长为______.
    13、(4分)若x是的整数部分,则的值是 .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,中,平分,的垂直平分线分别交、、于点、、,连接、.
    (1)求证:四边形是菱形;
    (2)若,,,求的长.
    15、(8分)如图,已知平行四边形ABCD延长BA到点E,延长DC到点E,使得AE=CF,连结EF,分别交AD、BC于点M、N,连结BM,DN.
    (1)求证:AM=CN;
    (2)连结DE,若BE=DE,则四边形BMDN是什么特殊的四边形?并说明理由.
    16、(8分)先化简,再求值,其中a=3,b=﹣1.
    17、(10分)如图,点是ΔABC内一点,连接OB、OC,并将AB、OB、OC、AC的中点、、、依次连结,得到四边形.
    (1)求证:四边形是平行四边形;
    (2)若为的中点,OM=5,∠OBC与∠OCB互余,求DG的长度.
    18、(10分)△ABC在平面直角坐标系xOy中的位置如图所示.
    (1)作△ABC关于点C成中心对称的△A1B1C1.
    (2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.
    (3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于_____.
    20、(4分)如图菱形 ABCD 的对角线 AC,BD 的长分别为 12 cm,16 cm,则这个菱形的周长为____.
    21、(4分)在Rt△ABC中,∠C=90°,△ABC的周长为,其中斜边的长为2,则这个三角形的面积为_____________。
    22、(4分)任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:、例如18可以分解成1×18,2×9,3×6这三种,这时就有.给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个整数的平方,则F(n)=1.其中正确说法的有_____.
    23、(4分)有甲、乙两张纸条,甲纸条的宽度是乙纸条宽的2倍,如图,将这两张纸条交叉重叠地放在一起,重合部分为四边形ABCD.则AB与BC的数量关系为 .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)定义:有一组对边平行,有一个内角是它对角的一半的凸四边形叫做半对角四边形,如图1,直线,点,在直线上,点,在直线上,若,则四边形是半对角四边形.
    (1)如图1,已知,,,若直线,之间的距离为,则AB的长是____,CD的长是______;
    (2)如图2,点是矩形的边上一点,,.若四边形为半对角四边形,求的长;
    (3)如图3,以的顶点为坐标原点,边所在直线为轴,对角线所在直线为轴,建立平面直角坐标系.点是边上一点,满足.
    ①求证:四边形是半对角四边形;
    ②当,时,将四边形向右平移个单位后,恰有两个顶点落在反比例函数的图象上,求的值.
    25、(10分)已知四边形中,,垂足为点,.
    (1)如图1,求证:;
    (2)如图2,点为上一点,连接,,求证:;
    (3)在(2)的条件下,如图3,点为上一点,连接,点为的中点,分别连接,,+==,,求线段的长.
    26、(12分)某单位计划在暑假阴间组织员工到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七折优惠;乙旅行社表示可先免去一位游客的费用,其余游客七五折优惠.设该单位参加旅游的人数是x人.选择甲旅行社时,所需费用为元,选择乙旅行社时,所需费用为元.
    (1)写出甲旅行社收费(元)与参加旅游的人数x(人)之间的关系式.
    (2)写出乙旅行社收费(元)与参加旅游的人数x(人)之间的关系式.
    (3)该单位选择哪一家旅行社支付的旅游费用较少?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    设这种水果每千克的售价为x元,购进这批水果m千克,根据这种水果的利润不低于35%列不等式求解即可.
    【详解】
    设这种水果每千克的售价为x元,购进这批水果m千克,根据题意,得
    (1-10%)mx-4m≥4m×35%,
    解得x≥6,
    答:售价至少为6元/千克.
    故选D.
    此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键.
    2、B
    【解析】
    将的常数项变号后移项到方程右边,然后方程两边都加上,方程左边利用完全平方公式变形后,即可得到结果.
    【详解】

    移项得:,
    两边加上得:,
    变形得:,
    则原方程利用配方法变形为.
    故选.
    此题考查了利用配方法解一元二次方程,利用此方法的步骤为:1、将二次项系数化为“”;2、将常数项移项到方程右边;3、方程两边都加上一次项系数一半的平方,方程左边利用完全平方公式变形,方程右边为非负常数;4、开方转化为两个一元一次方程来求解.
    3、C
    【解析】
    直接利用随机事件以及必然事件、不可能事件分别分析得出答案.
    【详解】
    A、明天会下雨是随机事件,故此选项错误;
    B、x是实数,x2<0,是不可能事件,故此选项错误;
    C、两个奇数之和为偶数,是必然事件,正确;
    D、异号两数相加,和为负数是随机事件,故此选项错误.
    故选C.
    此题主要考查了随机事件、必然事件、不可能事件,正确把握相关时间的定义是解题关键.
    4、C
    【解析】
    根据等腰三角形的腰长=(周长-底边长)÷2,把相关数值代入即可.
    【详解】
    等腰三角形的腰长y=(20-x)÷2=-+1.
    故选C.
    考查列一次函数关系式;得到三角形底腰长的等量关系是解决本题的关键.
    5、A
    【解析】
    根据最简二次根式的定义,对每一个选项进行化简即可.
    【详解】
    A、,与是同类二次根式,可以合并,该选项正确;
    B、,与不是同类二次根式,不可以合并,该选项错误;
    C、与不是同类二次根式,不可以合并,该选项错误;
    D、,与不是同类二次根式,不可以合并,该选项错误;
    故选择:A.
    本题考查了同类二次根式,掌握同类二次根式的定义是解题的关键.
    6、C
    【解析】
    根据配方法的步骤先把常数项移到等号的右边,再在等式两边同时加上一次项系数一半的平方,配成完全平方的形式,从而得出答案.
    【详解】

    ∴x2+6x=1,
    ∴x2+6x+9=1+9,
    ∴(x+3)2=10;
    故选:C.
    本题考查了配方法解一元二次方程,掌握配方法的步骤是解题的关键;配方法的一般步骤是:
    (1)把常数项移到等号的右边;
    (2)把二次项的系数化为1;
    (3)等式两边同时加上一次项系数一半的平方.
    7、A
    【解析】
    根据因式分解是把一个整式分解成几个整式乘积的形式由此即可解答.
    【详解】
    选项A,符合因式分解的定义,本选项正确;
    选项B,结果不是整式的积的形式,不是因式分解,本选项错误;
    选项C,结果不是整式的积的形式,不是因式分解,本选项错误;
    选项D,结果不是整式的积的形式,因而不是因式分解,本选项错误.
    故选A.
    本题主要考查了因式分解的定义,正确理解因式分解的定义是解题关键.
    8、D
    【解析】
    先根据题意画出图形,再利用勾股定理结合网格结构即可判断线段A′B与线段AC的关系.
    【详解】
    解:如图,将点A先向下平移3格,再向左平移1格到达A′点,连接A′B,与线段AC交于点O.
    ∵A′O=OB=,AO=OC=2,
    ∴线段A′B与线段AC互相平分,
    又∵∠AOA′=45°+45°=90°,
    ∴A′B⊥AC,
    ∴线段A′B与线段AC互相垂直平分.
    故选D.
    本题考查了平移的性质,勾股定理,正确利用网格求边长长度及角度是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、75°
    【解析】
    连接BD,根据BD,AC为正方形的两条对角线可知AC为BD的垂直平分线,所以∠AMD=AMB,求∠AMD,∠AMB,再根据三角形内角和可得.
    【详解】
    如图,连接BD,
    ∵∠BCE=∠BCD+∠DCE=90°+60°=150°,BC=EC,
    ∴∠EBC=∠BEC=(180°-∠BCE)=15°,
    ∵∠BCM=∠BCD=45°,
    ∴∠BMC=180°-(∠BCM+∠EBC)=120°
    ∴∠AMB=180°-∠BMC=60°
    ∵AC是线段BD的垂直平分线,M在AC上,
    ∴∠AMD=∠AMB=60°,
    ∴∠ADM=180〬-∠DAC-∠AMD=180〬-45〬-60〬=75〬.
    故答案为75〬
    本题考核知识点:正方形性质,等边三角形. 解题关键点:运用正方形性质,等边三角形性质求角的度数.
    10、1
    【解析】
    根据菱形的面积等于对角线乘积的一半列式进行计算即可得解.
    【详解】
    解:∵菱形的两条对角线长分别为3和4,
    ∴菱形的面积=×3×4=1.
    故答案为:1.
    本题考查了菱形的性质,菱形的面积通常有两种求法,可以用底乘以高,也可以用对角线乘积的一半求解,计算时要根据具体情况灵活运用.
    11、m>-2且m≠0
    【解析】
    分析:本题解出分式方程的解,根据题意解为正数并且解不能等于2,列出关于m的取值范围.
    解析:解方程 解为正数,∴ 且m≠0.
    故答案为m>-2且m≠0
    12、4
    【解析】
    由平行四边形的性质得出AB=CD=6,AD∥BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AB=CD=6,AD∥BC,
    ∴∠DAE=∠BEA,
    ∵AE平分∠BAD,
    ∴∠BAE=∠DAE,
    ∴∠BEA=∠BAE,
    ∴BE=AB=6,
    ∴CE=BC−BE=10−6=4;
    故答案为:4
    本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.
    13、1
    【解析】
    3<<4
    x=3
    ==1
    故答案为1.
    三、解答题(本大题共5个小题,共48分)
    14、(1)详见解析;(2)
    【解析】
    (1)根据平分,得到,再根据垂直平分,得到,,从而得到,故,,从而证明四边形是平行四边形,再根据证明四边形是菱形;
    (2)过点作,由(1)知,,得到,且,得到,由,得到,故由进行求解.
    【详解】
    解:(1)证明:∵平分,∴,
    ∵垂直平分,∴,,
    ∴,,
    ∴,
    ∴,,
    ∴四边形是平行四边形,
    又∵,
    ∴四边形是菱形;
    (2)如图,过点作,
    由(1)知∴,,
    ∴,且,
    ∴,,
    ∵,,
    ∴,
    ∴,
    ∴.
    此题主要考查菱形的判定与性质,解题的关键是熟知菱形的判定定理、含30°的直角三角形的性质及等腰直角三角形的性质.
    15、(1)见解析;(2)四边形BMDN是菱形,理由见解析.
    【解析】
    (1)由题意可证△AEM≌△FNC,可得结论.
    (2)由题意可证四边形BMDN是平行四边形,由题意可得BE=DE=DF,即可证∠BEM=∠DEF,即可证△BEM≌△DEM,可得BM=DM,即可得结论.
    【详解】
    (1)∵四边形ABCD是平行四边形
    ∴AB∥CD,AD∥BC,∠BAD=∠BCD
    ∴∠E=∠F,∠EAM=∠FCN
    ∵∠E=∠F,∠EAM=∠FCN,AE=CF
    ∴△AEM≌△CFN
    ∴AM=CN
    (2)菱形
    如图
    ∵AD=BC,AM=CN
    ∴MD=BN且AD∥BC
    ∴四边形BMDN是平行四边形
    ∵AB=CD,AE=CF
    ∴BE=DF,且BE=DE
    ∴DE=DF
    ∴∠DEF=∠DFE
    且∠BEF=∠DFE
    ∴∠BEF=∠DEF,且BE=DE,EM=EM
    ∴△BEM≌△EMD
    ∴BM=DM
    ∵四边形BMDN是平行四边形
    ∴四边形BMDN是菱形.
    本题考查了平行四边形的性质,全等三角形的性质和判定,菱形的判定,灵活运用这些性质解决问题是本题的关键.
    16、,.
    【解析】
    根据分式的减法和除法可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.
    【详解】







    =,
    当a=3,b=﹣1时,原式==.
    本题考查分式的混合运算,熟练掌握运算法则是解题关键.
    17、(1)见解析;(2)1.
    【解析】
    (1)根据三角形的中位线性质求出DG∥BC,EF∥BC,DG=BC,EF=BC,求出DG∥EF,DG=EF,根据平行四边形的判定得出即可;
    (2)求出∠BOC=90°,根据直角三角形的斜边上中线性质得出EF=2OM,即可求出答案.
    【详解】
    (1)证明: ∵点D、E、F、G分别是AB、OB、OC、AC的中点,
    ∴DG∥BC,EF∥BC,DG=BC,EF=BC,
    ∴DG∥EF,DG=EF,
    ∴四边形DEFG是平行四边形;
    (2)解:由 (1)知:四边形DEFG是平行四边形,
    ∴DG=EF.
    ∵ ∠OBC与∠OCB互余,
    ∴∠OBC+∠OCB=90°,
    ∴∠BOC=90°.
    ∵M为EF的中点,OM=5,
    ∴OM=EF,即EF=2OM=2×5=1,
    ∴DG=1.
    本题考查三角形的中位线性质,平行四边形的判定和性质,直角三角形斜边上中线性质等知识点,能熟练地运用定理进行推理是解题的关键.
    18、(1)见解析(2)见解析(3)(,0)
    【解析】
    解;作图如图所示,可得P点坐标为:(,0)。
    (1)延长AC到A1,使得AC=A1C1,延长BC到B1,使得BC=B1C1,即可得出图象。
    (2)根据△A1B1C1将各顶点向右平移4个单位,得出△A2B2C2。
    (3)作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,再利用相似三角形的性质求出P点坐标即可。
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    连接AW,如图所示:
    根据旋转的性质得:AD=AB′,∠DAB′=60°,
    在Rt△ADW和Rt△AB′W中,
    ,
    ∴Rt△ADW≌Rt△AB′W(HL),
    ∴∠B′AW=∠DAW=
    又AD=AB′=1,
    在RT△ADW中,tan∠DAW=,即tan30°=WD
    解得:WD=
    ∴,
    则公共部分的面积为:,
    故答案为.
    20、40cm
    【解析】
    根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴AC⊥BD,OA=AC=×12=6cm,
    OB=BD=×16=8cm,
    根据勾股定理得,,
    所以,这个菱形的周长=4×10=40cm.
    故答案为:40cm.
    本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.
    21、0.5
    【解析】
    首先根据三角形周长及斜边长度求得两直角边的和,再根据勾股定理得出两直角边各自平方数的和的值,再利用完全平方公式得出两直角边的乘积的2倍的值即可求出三角形面积.
    【详解】
    解:由题意可得AC+BC+AB=,
    ∵∠C=90°,则AB为斜边等于2,
    ∴AC+BC=,
    再根据勾股定理得出,
    根据完全平方公式,
    将AC+BC=和代入公式得:,
    即=1,
    ∴Rt△ABC面积=0.5=0.5.
    本题考查了勾股定理,解题的关键是利用完全平方公式求得两直角边的乘积的2倍的值.
    22、2
    【解析】
    把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是否与所给结果相同.
    【详解】
    ∵2=1×2,∴F(2)=,故(1)是正确的;
    ∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故(2)是错误的;
    ∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故(3)是错误的;
    ∵n是一个完全平方数,∴n能分解成两个相等的数,则F(n)=1,故(4)是正确的,∴正确的有(1),(4).
    故答案为2.
    本题考查了题目信息获取能力,解决本题的关键是理解答此题的定义:所有这种分解中两因数之差的绝对值最小,F(n)=(p≤q).
    23、AB=2BC.
    【解析】
    过A作AE⊥BC于E、作AF⊥CD于F,
    ∵甲纸条的宽度是乙纸条宽的2倍,
    ∴AE=2AF,
    ∵纸条的两边互相平行,
    ∴四边形ABCD是平行四边形,
    ∴∠ABC=∠ADC,AD=BC,
    ∵∠AEB=∠AFD=90°,
    ∴△ABE∽△ADF,
    ∴,即.
    故答案为AB=2BC.
    考点:相似三角形的判定与性质.
    点评:本题考查的是相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)2;;(2)AD=3;(3)①证明见解析;②的值为为或.
    【解析】
    (1)过点作于点,过点作于点,通过解直角三角形可求出,的长;
    (2)根据半对角四边形的定义可得出,进而可得出,由等角对等边可得出,结合即可求出的长;
    (3)①由平行四边形的性质可得出,,进而可得出,根据等腰三角形的性质及三角形外角的性质可得出,再结合半对角四边形的定义即可证出四边形是半对角四边形;
    ②由平行四边形的性质结合,可得出点,,的坐标,分点,落在反比例函数图象上及点,落在反比例函数图象上两种情况考虑:利用平移的性质及反比例函数图象上点的坐标特征可得出关于的一元一次方程,解之即可得出值,再利用反比例函数图象上点的坐标特征可求出值;同可求出值.综上,此题得解.
    【详解】
    解:(1)如图1,过点作于点,过点作于点.

    ,.
    在中,;
    在中,.
    故答案为:2;.
    (2)如图2,
    四边形为半对角四边形,




    (3)如图3,
    ①证明四边形为平行四边形,
    ,,


    又,
    四边形是半对角四边形;
    ②由题意,可知:点的坐标为,,点的坐标为,,点的坐标为.
    当点,向右平移个单位后落在反比例函数的图象上时,,
    解得:,

    当点,向右平移个单位后落在反比例函数的图象上时,

    解得:,

    综上所述:的值为为或.
    本题考查了解直角三角形、等腰三角形的性质、三角形外角的性质、平行四边形的性质、反比例函数图象上点的坐标特征以及解一元一次方程,解题的关键是:(1)通过解直角三角形求出,的长;(2)利用半对角四边形的定义及矩形的性质,求出;(3)①利用等腰三角形的性质、三角形外角的性质以及平行四边形的性质,找出;②分点,落在反比例函数图象上和点,落在反比例函数图象上两种情况,求出的值.
    25、(1)见解析;(2)见解析;(3)
    【解析】
    (1)如图1中,作DF⊥BC延长线于点F,垂足为F.证明△ABH≌△DCF(HL),即可解决问题.
    (2)如图2中,设∠BAH=α,则∠B=90°−α;设∠ADE=β则∠CED=2∠ADE+2∠BAH=2α+2β.证明∠ECD=∠EDC即可.
    (3)延长CM交DA延长线于点N,连接EN,首先证明△ECD为等边三角形,延长PD到K使DK=EQ,证明△EQC≌△DKC(SAS),推出∠DCK=∠ECQ,QC=KC,推出∠PCK=∠DCK+∠PCD=30°=∠PCQ,连接PQ.证明△PQC≌△PKC(SAS)推出PQ=PK,可得PK=PD+DK=PD+EQ=5+2=7,作PT⊥QD于T,∠PDT=60°,∠TPD=30°,作CR⊥ED于R,勾股定理解直角三角形求出RC,RQ即可解决问题.
    【详解】
    (1)证明:如图1中,作DF⊥BC延长线于点F,垂足为F.
    ∵AH⊥BC,
    ∴∠AHB=∠DFC=90°,
    ∵AD∥BC,
    ∴∠ADF+∠AFD=180°,
    ∴∠ADF=180°−90°=90°,
    ∴四边形AHFD为矩形,
    ∴AH=DF,
    ∵AH=DF,AB=CD,
    ∴△ABH≌△DCF(HL)
    ∴∠B=∠DCF,
    ∴AB∥CD.
    (2)如图2中,设∠BAH=α,则∠B=90°−α;设∠ADE=β,
    则∠CED=2∠ADE+2∠BAH=2α+2β.
    ∵AB∥CD,AB=CD,
    ∴四边形ABCD为平行四边形,
    ∴∠B=∠ADC=90°−α,
    ∴∠EDC=∠ADC−∠ADE=90°−α−β,
    在△EDC中,∠ECD=180°−∠CED−∠EDC=180°−(90°−α−β)−(2α+2β)=90°−α−β
    ∴∠EDC=∠ECD,
    ∴EC=ED.
    (3)延长CM交DA延长线于点N,连接EN,
    ∵AD∥BC,
    ∴∠ANM=∠BCM,
    ∵∠AMN=∠BMC、AM=MB,
    ∴△AMN≌△BMC(AAS)
    ∴AN=BC,
    ∵四边形ABCD为平行四边形,
    ∴AD=BC,
    ∴AD=AN,
    ∵AD∥BC,
    ∴∠DAH=∠HAD=90°,
    ∴EN=ED,
    ∵ED=EC,
    ∴EC=DE=EN,
    ∴∠ADE=∠ANE,∠ECM=∠ENM,
    ∵∠ADE+∠ECM=30°,
    ∴∠DEC=∠ADE+∠DNE+∠NCE,
    =∠ADE+∠ANE+∠ENC+∠DCN
    =2(∠ADE+∠ECM)=2×30°=60°.
    ∵EC=ED,
    ∴△ECD为等边三角形,
    ∴EC=CD,∠DCE=60°,延长PD到K使DK=EQ,
    ∵PD∥EC,
    ∴∠PDE=∠DEC=60°,∠KDC=∠ECD=60°,
    ∴∠KDC=∠DEC,EC=CD,DK=EQ,
    ∴△EQC≌△DKC(SAS),
    ∴∠DCK=∠ECQ,QC=KC,
    ∵∠ECQ+∠PCD=∠ECD−∠PCQ=60°−30°=30°,
    ∴∠PCK=∠DCK+∠PCD=30°=∠PCQ,
    连接PQ.
    ∵PC=PC,∠PCK=∠PCQ, QC=KC,
    ∴△PQC≌△PKC(SAS)
    ∴PQ=PK,
    ∵PK=PD+DK=PD+EQ=5+2=7,
    作PT⊥QD于T,∠PDT=60°,∠TPD=30°,
    ∴TD=PD=,PT==,
    在Rt△PQT中,QT=,
    ∴QD=,
    ∴ED=8+2=10,
    ∴EC=ED=10,作CR⊥ED于R,∠DEC=60°∠ECR=30°,
    ∴ER=EC=5,RC=,RQ=5−2=3
    在Rt△QRC中,CQ=.
    本题属于四边形综合题考查了平行四边形的判定和性质,全等三角形的判定和性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考压轴题.
    26、(1);(2);(3)当人数为15人时,两家均可选择,当人数在之间时选择乙旅行社,当人数时,选择甲旅行社,见解析.
    【解析】
    (1)根据甲旅行社的优惠方式,可计算出y1与x之间的关系.
    (2)根据乙旅行社的优惠方式,可计算出y2与x之间的关系.
    (3)根据(1)(2)的表达式,利用不等式的知识可得出人数多少克选择旅行社.
    【详解】
    (1);
    (2)根据乙旅行社的优惠方式;;
    (3)①甲社总费用=乙社总费用的情况,此时,解得:;
    即当时,两家费用一样.
    ②甲社总费用多于乙社总费用的情况:,
    解不等式得:,
    即当时,乙旅行社费用较低.
    ③甲社总费用少于乙社总费用的情况,此时
    解得:
    即当时,甲旅行社费用较低.
    答:当人数为15人时,两家均可选择,当人数在之间时选择乙旅行社,当人数时,选择甲旅行社.
    此题考查了一次函数的应用,解答本题的关键是得出甲乙旅行社收费与人数之间的关系式,利用不等式的知识解答,难度一般.
    题号





    总分
    得分
    相关试卷

    2025届北京市西城区月坛中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2025届北京市西城区月坛中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届北京市西城区北师大附属实验中学数学九年级第一学期开学经典模拟试题【含答案】: 这是一份2025届北京市西城区北师大附属实验中学数学九年级第一学期开学经典模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届北京市大兴区名校数学九年级第一学期开学考试模拟试题【含答案】: 这是一份2025届北京市大兴区名校数学九年级第一学期开学考试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map