2024年山西省阳泉市郊区九年级数学第一学期开学联考试题【含答案】
展开这是一份2024年山西省阳泉市郊区九年级数学第一学期开学联考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各组数中不能作为直角三角形的三边长的是( )
A.3,4,5B.13,14,15C.5,12,13D.15,8,17
2、(4分)如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,AB=8,,则CG的长是( )
A.2B.3C.4D.5
3、(4分)下列多项式中,能用平方差公式因式分解的是( )
A.B.C.D.
4、(4分)用配方法解方程,经过配方,得到()
A.B.C.D.
5、(4分)要比较两名同学共六次数学测试中谁的成绩比较稳定,应选用的统计量为( )
A.中位数 B.方差 C.平均数 D.众数
6、(4分)下列视力表的部分图案中,既是轴对称图形亦是中心对称图形的是( )
A.B.C.D.
7、(4分)已知两圆的半径 R 、r 分别是方程x2-7x+10=0的两根,两圆的圆心距为 7, 则两圆的位置关系是( )
A.外离B.相交C.外切D.内切
8、(4分)京剧是中国的“国粹”,京剧脸谱是一种具有汉族文化特色的特殊化妆方法由于每个历史人物或某一种类型的人物都有一种大概的谱式,就像唱歌、奏乐都要按照乐谱一样,所以称为“脸谱”如图是京剧华容道中关羽的脸谱图案在下面的四个图案中,可以通过平移图案得到的是
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一组数据10,9,10,12,9的中位数是__________.
10、(4分)如图是甲、乙两人10次射击成绩的条形统计图,则甲、乙两人成绩比较稳定的是________.
11、(4分)已知一次函数的图象过点(3,5)与点(-4,-9),则这个一次函数的解析式为____________.
12、(4分)如图,在边长为2的正方形ABCD中,点E是边AD中点,点F在边CD上,且FE⊥BE,设BD与EF交于点G,则△DEG的面积是___
13、(4分)如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=2,CD=1,则AC的长是_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)关于x的一元二次方程有两个不等实根,.
(1)求实数k的取值范围;
(2)若方程两实根,满足,求k的值.
15、(8分)对于实数a,b,定义运算“⊗”:a⊗b=,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=1.若x1,x2是一元二次方程x2﹣3x+2=0的两个根,则x1⊗x2等于( )
A.﹣1B.±2C.1D.±1
16、(8分)已知,求代数式的值.
17、(10分)如图,,是四边形的对角线上两点,,,.求证:四边形是平行四边形.
18、(10分)随着“一带一路”的不断建设与深化,我国不少知名企业都积极拓展海外市场,参与投资经营.某著名手机公司在某国经销某种型号的手机,受该国政府经济政策与国民购买力双重影响,手机价格不断下降.分公司在该国某城市的一家手机销售门店,今年5月份的手机售价比去年同期每台降价1000元,若卖出同样多的手机,去年销售额可达10万元,今年销售额只有8万元.
(1)今年5月份每台手机售价多少元?
(2)为增加收入,分公司决定拓展产品线,增加经销某种新型笔记本电脑.已知手机每台成本为3500元,笔记本电脑每台成本为3000元,分公司预计用不少于4.8万元的成本资金少量试生产这两种产品共15台,但因资金所限不能超过5万元,共有几种生产方案?
(3)如果笔记本电脑每台售价3800元,现为打开笔记本电脑的销路,公司决定每售出1台笔记本电脑,就返还顾客现金a元,要使(2)中各方案获利最大,a的值应为多少?最大利润多少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知为实数,若有正数b,m,满足,则称是b,m的弦数.若且为正数,请写出一组,b, m使得是b,m的弦数:_____________.
20、(4分)如图,已知矩形,,,点为中点,在上取一点,使的面积等于,则的长度为_______.
21、(4分)如果关于的不等式组的整数解仅有,,那么适合这个不等式组的整数,组成的有序数对共有_______个;如果关于的不等式组(其中,为正整数)的整数解仅有,那么适合这个不等式组的整数,组成的有序数对共有______个.(请用含、的代数式表示)
22、(4分)已知反比例函数的图象经过点,则b的值为______.
23、(4分)点M(a,2)是一次函数y=2x-3图像上的一点,则a=________.
二、解答题(本大题共3个小题,共30分)
24、(8分)为了维护国家主权和海洋权力,海监部门对我国领海实行常态化巡航管理,如图,正在执行巡航任务的海监船以每小时30海里的速度向正东方航行,在处测得灯塔在北偏东60°方向上, 继续航行后到达处, 此时测得灯塔在北偏东30°方向上.
(1) 求的度数;
(2)已知在灯塔的周围15海里内有暗礁,问海监船继续向正东方向航行是否安全?
25、(10分)解方程组:.
26、(12分)已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).
(1)四边形EFGH的形状是 ,证明你的结论;
(2)当四边形ABCD的对角线满足 条件时,四边形EFGH是矩形;
(3)你学过的哪种特殊四边形的中点四边形是矩形? .(不证明)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
分别把选项中的三边平方后,根据勾股定理逆定理即可判断能够构成直角三角形.
【详解】
解:A选项中,,∴能构成直角三角形;
B选项中,,∴不能构成直角三角形;
C选项中,,∴能构成直角三角形;
D选项中,,∴能构成直角三角形;
故选B.
本题主要考查构成直角三角形的条件,掌握勾股定理的逆定理是解题的关键.
2、B
【解析】
由角平分线和平行四边形的性质可得出AD=DG,故CG=CD-DG=AB-AD,代入数值即可得解.
【详解】
解:∵平行四边形ABCD,
∴CD=AB=8,CD∥AB,
∴∠DGA=∠GAB,
∵AG平分∠BAD
∴∠DAG =∠GAB,
∴∠DAG=∠DGA
∴AD=DG
∴CG=CD-DG=AB-AD=8-5=3
故选:B
本题考查的是作图-基本作图,熟知平行四边形的性质、平行线的性质是解决问题的关键.
3、A
【解析】
根据平方差公式的特点,两平方项符号相反,对各选项分析判断后利用排除法求解.
【详解】
解:A、-m2与n2符号相反,能运用平方差公式,故本选项正确;
B、有三项,不能运用平方差公式,故本选项错误;
C、m2与n2符号相同,不能运用平方差公式,故本选项错误;
D、-a2与-b2符号相同,不能运用平方差公式,故本选项错误.
故选:A.
本题主要考查了平方差公式分解因式,熟记公式结构是解题的关键.
4、B
【解析】
按照配方法的步骤,先把常数项移到右侧,然后在两边同时加上一次项系数一半的平方,配方即可.
【详解】
x2+3x+1=0,
x2+3x=-1,
x2+3x+=-1+,
,
故选B.
本题考查了解一元二次方程——配方法,熟练掌握配方法的步骤以及要求是解题的关键.
5、B
【解析】分析:方差是用来衡量一组数据波动大小的量,中位数、众数、平均数是反映一组数据的集中程度
详解:由于方差反映数据的波动情况,所以要比较两名同学在四次数学测试中谁的成绩比较稳定,应选用的统计量是方差.
故选B.
点睛:本题考查了统计量的选取问题,熟练掌握各统计量的特征是解答本题的关键.中位数反映一组数据的中等水平,众数反映一组数据的多数水平,平均数反映一组数据的平均水平,方差反映一组数据的稳定程度,方差越大越不稳定,方差越小越稳定.
6、B
【解析】
在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形;据此分别对各选项图形加以判断即可.
【详解】
A:是轴对称图形,但不是中心对称图形,故不符合题意;
B:是轴对称图形,也是中心对称图形,故符合题意;
C:不是轴对称图形,是中心对称图形,故不符合题意;
D:不是轴对称图形,也不是中心对称图形,故不符合题意;
故选:B.
本题主要考查了轴对称图形与中心对称图形的识别,熟练掌握相关概念是解题关键.
7、C
【解析】
首先解方程x2-7x+10=0,求得两圆半径R 、r的值,又由两圆的圆心距为7,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.
【详解】
解:∵x2-7x+10=0,
∴(x-2)(x-5)=0,
∴x1=2,x2=5,
即两圆半径R 、r分别是2,5,
∵2+5=7,两圆的圆心距为7,
∴两圆的位置关系是外切.
故选:C.
本题考查圆与圆的位置关系与一元二次方程的解法,注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解题的关键.
8、A
【解析】
结合图形,根据平移的概念进行求解即可得.
【详解】
解:根据平移的定义可得图案可以通过A平移得到,
故选A.
本题考查平移的基本概念及平移规律,是比较简单的几何图形变换关键是要观察比较平移前后物体的位置.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据中位数的意义,将数据排序后找中间位置的数会中间两个数的平均数即可.
【详解】
将数据按从小到大排列为:9,9,1,1 12,处于中间位置也就是第3位的是1,因此中位数是1,
故答案为:1.
此题考查中位数的意义,理解中位数的意义,掌握中位数的方法是解题关键.
10、乙
【解析】
∵通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,
∴甲的方差大于乙的方差,
∴乙的成绩比较稳定.
故答案为乙.
点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
11、
【解析】
设一次函数的解析式为:,利用待定系数法把已知点的坐标代入解析式,解方程组即可得答案.
【详解】
解:设一次函数的解析式为:,
解得:
所以这个一次函数的解析式为:
故答案为:
本题考查的是利用待定系数法求解一次函数的解析式,掌握待定系数法是解题的关键.
12、
【解析】
过点G作GM⊥AD于M,先证明△ABE∽△DEF,利用相似比计算出DF= ,再利用正方形的性质判断△DGM为等腰直角三角形得到DM=MG,设DM=x,则MG=x,EM=1-x,然后证明△EMG∽△EDF,则利用相似比可计算出GM,再利用三角形面积公式计算S△DEG即可.
【详解】
解:过点G作GM⊥AD于M,如图,
∵FE⊥BE,
∴∠AEB+∠DEF=90°,
而∠AEB+∠ABE=90°,
∴∠ABE=∠DEF,
而∠A=∠EDF=90°,
∴△ABE∽△DEF,
∴AB:DE=AE:DF,即2:1=1:DF,
∴DF=,
∵四边形ABCD为正方形,
∴∠ADB=45°,
∴△DGM为等腰直角三角形,
∴DM=MG,
设DM=x,则MG=x,EM=1-x,
∵MG∥DF,
∴△EMG∽△EDF,
∴MG:DF=EM:ED,即x:=(1-x):1,解得x=,
∴S△DEG=×1×=,
故答案为.
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.熟练运用相似比计算线段的长.
13、
【解析】
作DE⊥AB于E,根据角平分线的性质得到DE=DC,根据勾股定理求出BE,再根据勾股定理计算即可.
【详解】
解:作DE⊥AB于E,
∵AD是∠BAC的平分线,∠ACB=90°,DE⊥AB,
∴DE=DC=1,
在Rt△ACD和Rt△AED中,
∴Rt△ACD≌Rt△AED(HL),
∴AC=AE,
由勾股定理得,
设AC=AE=x,
由勾股定理得x2+32=(x+)2,
解得x=.
∴AC=.
故答案为:.
本题考查的是勾股定理以及角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1) k<;(2) k=1.
【解析】
(1)根据一元二次方程的根的判别式得出△>1,求出不等式的解集即可;
(2)根据根与系数的关系得出x1+x2=-(2k-1)=1-2k,x1•x2=k2,代入x1+x2+x1x2-1=1,即可求出k值.
【详解】
解:(1)∵关于x的一元二次方程x2+(2k-1)x+k2=1有两个不等实根x1,x2,
∴△=(2k-1)2-4×1×k2=-4k+1>1,
解得:k<,
即实数k的取值范围是k<;
(2)由根与系数的关系得:x1+x2=-(2k-1)=1-2k,x1•x2=k2,
∵x1+x2+x1x2-1=1,
∴1-2k+k2-1=1,
∴k2-2k=1
∴k=1或2,
∵由(1)知当k=2方程没有实数根,
∴k=2不合题意,舍去,
∴k=1.
本题考查了解一元二次方程根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键,注意用根与系数的关系解题时要考虑根的判别式,以防错解.
15、D
【解析】
先解方程,求出方程的解,分为两种情况,当x2=2,x2=2时,当x2=2,x2=2时,根据题意求出即可.
【详解】
解方程x2﹣3x+2=0得x=2或x=2,
当x2=2,x2=2时,x2⊗x2=22﹣2×2=﹣2;
当x2=2,x2=2时,x2⊗x2=2×2﹣22=2.
故选:D.
考查解一元二次方程-因式分解法,注意分类讨论,不要漏解.
16、11
【解析】
先求出m+n和mn的值,再根据完全平方公式变形,代入求值即可.
【详解】
∵,
∴m+n=2,mn=1
∴=.
此题考查了二次根式的混合运算法则,完全平方公式的应用,主要考查了学生的计算能力,题目较好.
17、见解析
【解析】
由平行线的性质得出∠AEB=∠CFD,求出BE=DF,由SAS即可得出△ABE≌△CDF,可得∠ABD=∠CDB,AB=CD,从而可判定四边形ABCD是平行四边形.
【详解】
解:证明:∵AE∥CF,
∴∠AEB=∠CFD,
∵BF=DE,
∴BF+EF=DE+EF,即BE=DF,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(SAS),
∴∠ABD=∠CDB,AB=CD,
∴AB∥CD,
∴四边形ABCD是平行四边形.
本题考查了全等三角形的判定和性质、平行线的性质、平行四边形的判定;熟练掌握全等三角形的判定方法是解题的关键.
18、 (1)今年5月份每台手机售价4000元;(2)5种生产方案;(3)a的值应为2元,最大利润为7500元.
【解析】
(1)设今年5月份手机每台售价为m元,则去年同期每台售价为(m+100)元,根据数量=总价÷单价结合今年5月份与去年同期的销售数量相同,即可得出关于m的分式方程,解之经检验后即可得出结论;
(2)设生产手机x台,则生产笔记本电脑(15-x)台,根据总价=单价×数量结合总价不少于4.8万元不能超过高于5万元,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,由该范围内整数的个数即可得出方案的种数;
(3)设总获利为w元,根据利润=销售收入-成本,即可得出w关于x的一次函数关系式,由w的值与x无关,即可得出a-2=0,解之即可求出a值.
【详解】
(1)设今年5月份手机每台售价为m元,则去年同期每台售价为(m+100)元,
根据题意得:,
解得:m=4000,
经检验,m=4000是原方程的根且符合题意.
答:今年5月份手机每台售价为4000元.
(2)设生产手机x台,则生产笔记本电脑(15-x)台,
根据题意得:,
解得:6≤x≤1,
∴x的正整数解为6、7、8、9、1.
答:共有5种生产方案.
(3)设总获利为w元,
根据题意得:w=(4000-3500)x+(3800-20-a)(15-x)=(a-2)x+12000-15a.
∵w的值与x值无关,
∴a-2=0,即a=2.
当a=2时,最大利润为12000-15×2=7500元.
本题考查了分式方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据数量关系,找出w关于x的函数关系式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(答案不唯一)
【解析】
根据题中提供的弦数的定义判断即可.
【详解】
解:,
是4,3的弦数,
故答案为:(答案不唯一)
本题考查了平方差公式,正确理解题中的新定义是解本题的关键.
20、
【解析】
设DP=x,根据,列出方程即可解决问题.
【详解】
解:设DP=x
∵, AD=BC=6,AB=CD=8,
又∵点为中点
∴BQ=CQ=3,
∴18=48− ⋅x⋅6− (8−x)⋅3−⋅8⋅3,
∴x=4,
∴DP=4
故答案为4cm
本题考查了利用矩形的性质来列方程求线段长度,正确列出方程是解题的关键.
21、6 pq
【解析】
(1)求出不等式组的解集,根据不等式组的解集和已知得出,,求出a b的值,即可求出答案;
(2)求出不等式组的解集,根据不等式组的解集和已知得出,,即,;结合p,q为正整数,d,e为整数可知整数d的可能取值有p个,整数e的可能取值有q个,即可求解.
【详解】
解:(1)解不等式组,得不等式组的解集为:,
∵关于的不等式组的整数解仅有1,2,
∴,,
∴4≤b<6,0<a≤3,
即b的值可以是4或5,a的值是1或2或3,
∴适合这个不等式组的整数a,b组成的有序数对(a,b)可能是(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),
∴适合这个不等式组的整数a,b组成的有序数对(a,b)共6个;
(2)解不等式组(其中,为正整数),
解得:,
∵不等式组(其中p,q为正整数)的整数解仅有c1,c2,…,cn(c1<c2<…<cn),
∴,,
∴,,
∵p,q为正整数
∴整数d的可能取值有p个,整数e的可能取值有q个,
∴适合这个不等式组的整数d,e组成的有序数对(d,e)共有pq个;
故答案为:6;pq.
本题考查了一元一次不等式组的整数解,解题的关键是掌握解一元一次不等式组的一般步骤.
22、-1
【解析】
将点的坐标代入反比例函数解析式即可解答.
【详解】
把点(-1,b)代入y=,得b==-1.
故答案是:-1.
考查了反比例函数图象上点的坐标特征.函数图象上所有点的坐标均满足该函数解析式.
23、.
【解析】
解:因为点M(a,2)是一次函数y=2x-3图象上的一点,
∴2=2a-3,
解得a=
故答案为:.
二、解答题(本大题共3个小题,共30分)
24、(1)30°;(2)海监船继续向正东方向航行没有触礁的危险,见解析
【解析】
(1)在△ABC中,求出∠CAB、∠CBA的度数即可解决问题;
(2)作CD⊥AB于D.求出CD的值即可判定;
【详解】
解:(1)由题意得,∠CAB=30°,∠CBA=30°+90°=120°
∴∠ACB=180°-∠CBA-∠CAB=30°;
(2)由(1)可知∠ACB=∠CAB=30°,
∴AB=CB=30×=20(海里), ∠CBD=60°,
过点C作CD⊥AB于点D,在Rt△CBD中,
CD=BCsin60°=10(海里)
10>15
∴海监船继续向正东方向航行是安全的.
本题考查了解直角三角形的应用-方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.
25、,,,.
【解析】
由①得(x﹣y)(x﹣2y)=0,即x﹣y=0,x﹣2y=0,然后将原方程组化为或求解即可.
【详解】
,
由①,得(x﹣y)(x﹣2y)=0,
∴x﹣y=0,x﹣2y=0,
所以原方程组可以变形为或,
解方程组,得,;
解方程组,得,,
所以原方程组的解为: ,,,.
本题考查了二元二次方程组的解法,解题思路类似与二元一次方程组,通过代入消元法转化为一元二次方程求解即可.
26、(1)平行四边形;(2)互相垂直;(3)菱形.
【解析】
分析:(1)、连接BD,根据三角形中位线的性质得出EH∥FG,EH=FG,从而得出平行四边形;(2)、首先根据三角形中位线的性质得出平行四边形,根据对角线垂直得出一个角为直角,从而得出矩形;(3)、根据菱形的性质和三角形中位线的性质得出平行四边形,然后根据对角线垂直得出矩形.
详解:(1)证明:连结BD.
∵E、H分别是AB、AD中点, ∴EH∥BD,EH=BD,
同理FG∥BD,FG=BD, ∴EH∥FG,EH=FG, ∴四边形EFGH是平行四边形
(2)当四边形ABCD的对角线满足互相垂直的条件时,四边形EFGH是矩形.
理由如下:如图,连结AC、BD.
∵E、F、G、H分别为四边形ABCD四条边上的中点, ∴EH∥BD,HG∥AC,
∵AC⊥BD, ∴EH⊥HG, 又∵四边形EFGH是平行四边形, ∴平行四边形EFGH是矩形;
(3)菱形的中点四边形是矩形.理由如下:如图,连结AC、BD.
∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,FG∥BD,EH=BD,FG=BD, ∴EH∥FG,EH=FG,
∴四边形EFGH是平行四边形.∵四边形ABCD是菱形, ∴AC⊥BD,∵EH∥BD,HG∥AC,
∴EH⊥HG, ∴平行四边形EFGH是矩形.
点睛:本题主要考查的就是三角形中位线的性质以及特殊平行四边形的判定,属于中等难度题型.三角形的中位线平行且等于第三边的一半.解决这个问题的关键就是要明确特殊平行四边形的判定定理.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2023-2024学年山西省阳泉市郊区数学九年级第一学期期末联考模拟试题含答案,共9页。试卷主要包含了的绝对值是等内容,欢迎下载使用。
这是一份2023-2024学年山西省阳泉市郊区八年级数学第一学期期末学业水平测试模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,把通分,下列计算正确的是等内容,欢迎下载使用。
这是一份2022-2023学年山西省阳泉市郊区数学七年级第二学期期末教学质量检测模拟试题含答案,共6页。试卷主要包含了若正比例函数的图象经过点等内容,欢迎下载使用。