2024年山东省青岛市广雅中学九年级数学第一学期开学调研试题【含答案】
展开
这是一份2024年山东省青岛市广雅中学九年级数学第一学期开学调研试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图所示,在平行直角坐标系中,▱OMNP的顶点P坐标是(3,4),顶点M坐标是(4,0)、则顶点N的坐标是( )
A.N(7,4)B.N(8,4)C.N(7,3)D.N(8,3)
2、(4分)如图,在△ABC中,BF平分∠ABC,过A点作AF⊥BF,垂足为F并延长交BC于点G,D为AB中点,连接DF延长交AC于点E。若AB=12,BC=20,则线段EF的长为( )
A.2B.3C.4D.5
3、(4分)下列各式从左到右的变形为分解因式的是( )
A.m2﹣m﹣6=(m+2)(m﹣3)
B.(m+2)(m﹣3)=m2﹣m﹣6
C.x2+8x﹣9=(x+3)(x﹣3)+8x
D.x2+1=x(x+)
4、(4分)将一次函数y=﹣2x的图象向下平移6个单位,得到新的图象的函数解析式为( )
A.y=﹣8xB.y=4xC.y=﹣2x﹣6D.y=﹣2x+6
5、(4分)已知一次函数,且随的增大而减小,那么它的图象经过
A.第一、二、三象限B.第一、二、四象限
C.第一、三、四象限D.第二、三、四象限
6、(4分)一个五边形的内角和为( )
A.540° B.450° C.360° D.180°
7、(4分)若(x﹣2)x=1,则x的值是( )
A.0B.1C.3D.0或3
8、(4分)如图,将△ABC绕点A旋转至△ADE的位置,使点E落在BC边上,则对于结论:①DE=BC;②∠EAC=∠DAB;③EA平分∠DEC;④若DE∥AC,则∠DEB=60°;其中正确结论的个数是( )
A.4B.3C.2D.1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在△ABC中,点D,E分别是BC,AC的中点,AB=8,则DE的长为________.
10、(4分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:
该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,可判定_____被录用.
11、(4分)如图,一次函数的图象与x轴、y轴分别交于点A、B,将沿直线AB翻折得到,连接OC,那么线段OC的长为______.
12、(4分)如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是_____度.
13、(4分)在两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北向东驶去,若自行车与摩托车每秒分别行驶7.5米、10米,则10秒后两车相距______米;
三、解答题(本大题共5个小题,共48分)
14、(12分)选择合适的点,在如图所示的坐标系中描点画出函数的图象,并指出当为何值时,的值大于1.
15、(8分)某校全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况,并统计绘制成了如图两幅不完整的条形统计图和扇形统计图,请根据所提供的信息,解答下列问题:
(1)本次共抽查学生 人,并将条形图补充完整:
(2)捐款金额的众数是 元,中位数是 元;
(3)若该校共有2000名学生参加捐款,根据样本平均数估计该校大约可捐款多少元?
16、(8分)如图,△ABC是等边三角形,BD是中线,P是直线BC上一点.
(1) 若CP=CD,求证:△DBP是等腰三角形;
(2) 在图①中建立以△ABC的边BC的中点为原点,BC所在直线为x轴,BC边上的高所在直线为y轴的平面直角坐标系,如图②,已知等边△ABC的边长为2,AO=,在x轴上是否存在除点P以外的点Q,使△BDQ是等腰三角形?如果存在,请求出Q点的坐标;如果不存在,请说明由.
17、(10分)某车间加工300个零件,加工完80个以后,改进了操作方法,每天能多加工15个,一共用了6天完成任务.求改进操作方法后每天加工的零件个数.
18、(10分)计算:2b﹣(4a+)(a>0,b>0).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若方程x2﹣x=0的两根为x1,x2(x1<x2),则x2﹣x1=______.
20、(4分)如图,是同一双曲线上的三点过这三点分别作轴的垂线,垂足分别为,连结得到的面积分别为.那么的大小关系为____.
21、(4分)化简: 的结果是_____.
22、(4分)抛物线的顶点坐标是__________.
23、(4分)如图,在平行四边形ABCD中,BC=8cm,AB=6cm,BE平分∠ABC交AD边于点E,则线段DE的长度为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)一列火车以的速度匀速前进.
(1)求行驶路程单位:关于行驶时间单位:的函数解析式;
(2)在平面直角坐标系中画出该函数的图象.
25、(10分)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
(1)求证:△ADE≌△ABF;
(2)填空:△ABF可以由△ADE绕旋转中心 点,按顺时针方向旋转 度得到;
(3)若BC=8,DE=6,求△AEF的面积.
26、(12分)甲、乙两位同学同时从学校出发,骑自行车前往距离学校20千米的郊野公园。已知甲同学比乙同学平均每小时多骑行2千米,甲同学在路上因事耽搁了30分钟,结果两人同时到达公园。问:甲、乙两位同学平均每小时各骑行多少千米?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
此题可过P作PE⊥OM,过点N作NF⊥OM,根据勾股定理求出OP的长度,则N点坐标便不难求出.
【详解】
过P作PE⊥OM,过点N作NF⊥OM,
∵顶点P的坐标是(3,4),
∴OE=3,PE=4,
∵四边形ABCD是平行四边形,
∴OE=MF=3,
∵4+3=7,
∴点N的坐标为(7,4).
故选A.
此题考查了平行四边形的性质,根据平行四边形的性质和点P的坐标,作出辅助线是解决本题的突破口.
2、C
【解析】
由直角三角形的性质可求得DF=BD= AB,由角平分线的定义可证得DE∥BC,利用三角形中位线定理可求得DE的长,则可求得EF的长.
【详解】
解:∵AF⊥BF,D为AB的中点,
∴DF=DB=AB=6,
∴∠DBF=∠DFB,
∵BF平分∠ABC,
∴∠DBF=∠CBF,
∴∠DFB=∠CBF,
∴DE∥BC,
∴DE为△ABC的中位线,
∴DE=BC=10,
∴EF=DE−DF=10−6=4,
故选:C.
本题考查直角三角形斜边上的中线的性质,角平分线的性质,等腰三角形的判定与性质,三角形中位线定理.根据直角三角形斜边上的中线是斜边是斜边的一半可得△DBF为等腰三角形,通过角平分线的性质和等角对等边可得DF//BC,即DE为△ABC的中位线,从而计算出DE,继而求出EF.
3、A
【解析】
根据因式分解的概念逐项判断即可.
【详解】
A、等式从左边到右边,把多项式化成了两个整式积的形式,符合因式分解的定义,故A正确;
B、等式从左边到右边属于整式的乘法,故B不正确;
C、等式的右边最后计算的是和,不符合因式分解的定义,故C不正确;
D、在等式的右边不是整式,故D不正确;
故选A.
4、C
【解析】
直接利用一次函数平移规律,“上加下减”进而得出即可.
【详解】
解:将一次函数的图象向下平移6个单位,那么平移后所得图象的函数解析式为:,
故选:.
此题主要考查了一次函数图象与几何变换,熟练记忆函数平移规律是解题关键.
5、B
【解析】
先根据一次函数的性质判断出k的取值范围,再根据一次函数的图象与系数的关系即可得出结论.
【详解】
∵一次函数y=kx+3,y随x的增大而减小,
∴k<0,
∵b=3>0,
∴此函数的图象经过一、二、四象限.
故选:B.
本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,k<0,b>0时函数的图象在一、二、四象限是解答此题的关键.
6、A
【解析】【分析】直接利用多边形的内角和公式进行计算即可.
【详解】根据正多边形内角和公式:180°×(5﹣2)=540°,
即一个五边形的内角和是540度,
故选A.
【点睛】本题主要考查了正多边形内角和,熟练掌握多边形的内角和公式是解题的关键.
7、D
【解析】
根据零指数幂的性质解答即可.
【详解】
解:∵(x﹣2)x=1,
∴x﹣2=1或x=0,解答x=3或x=0,
故选D.
本题考查了零指数幂的性质,熟记零指数幂的性质是解题的关键.
8、A
【解析】
由旋转的性质可知,△ABC≌△ADE,DE=BC,可得①正确;∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,可得∠EAC=∠DAB,可判定②正确;AE=AC,则∠AEC=∠C,再由∠C=∠AED,可得∠AEC=∠AED;可判定③正确;根据平行线的性质可得可得∠C=∠BED,∠AEC=∠AED=∠C,根据平角的定义可得∠DEB=60°;综上即可得答案.
【详解】
∵将△ABC绕点A旋转至△ADE的位置,使点E落在BC边上,
∴△ABC≌△ADE,
∴DE=BC,AE=AC,∠BAC=∠DAE,∠C=∠AED,故①正确;
∴∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,
∴∠EAC=∠DAB;故②正确;
∵AE=AC,
∴∠AEC=∠C,
∴∠AEC=∠AED,
∴EA平分∠DEC;故③正确;
∵DE∥AC,
∴∠C=∠BED,
∵∠AEC=∠AED=∠C,
∴∠DEB=∠AEC=∠AED =60°,故④正确;
综上所述:正确的结论是①②③④,共4个,
故选:A.
本题考查旋转的性质,旋转前、后的两个图形全等,对应边、对应角相等,对应点与旋转中心所连线段的夹角等于旋转角.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
【分析】根据三角形的中位线定理进行求解即可得.
【详解】∵D,E分别是BC,AC的中点,
∴DE是△ABC的中位线,
∴DE=AB==1,
故答案为:1.
【点睛】本题考查了三角形中位线定理,熟记定理的内容是解题的关键.
10、乙
【解析】
由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.
【详解】
解:∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,
∴甲淘汰;
乙成绩=85×60%+80×30%+75×10%=82.5,
丙成绩=80×60%+90×30%+73×10%=82.3,
乙将被录取.
故答案为:乙.
本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.
11、.
【解析】
利用一次函数图象上点的坐标特征求得点A、B的坐标,易得线段AB的长度,然后利用面积法求得OD的长度,结合翻折图形性质得到.
【详解】
解:如图,设直线OC与直线AB的交点为点D,
一次函数的图象与x轴、y轴分别交于点A、B,
、,
,,,
将沿直线AB翻折得到,
,
,
.
故答案是:.
考查了一次函数图象与几何变换,此题将求线段OC的长度转换为求直角三角形AOB斜边上高的问题,降低了题目的难度.
12、22.5
【解析】
∵ABCD是正方形,
∴∠DBC=∠BCA=45°,
∵BP=BC,
∴∠BCP=∠BPC=(180°-45°)=67.5°,
∴∠ACP度数是67.5°-45°=22.5°
13、1
【解析】
直接根据题意画出直角三角形,进而利用勾股定理得出答案.
【详解】
解:如图所示:
由题意可得,在Rt△ACB中,AC=75m,BC=100m,
则AB==1(m),
故答案为:1.
本题考查了勾股定理的应用,正确画出图形是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、图象见详解;时,.
【解析】
任意选取两个的值,代入后求得对应值,在网格上对应标出,连接,可得所需直线,根据已画图象可得时,的取值范围.
【详解】
在函数中,
当时,,
当时,,
描点,画图如下:
由图可知, 时,.
本题考查了一次函数图象的画法,及根据图象求符合条件的的取值范围的问题,熟练掌握相关技巧是解题的关键.
15、(1)50,见解析;(2)10,12.5;(3)根据样本平均数估计该校大约可捐款26200元.
【解析】
(1)由捐款15元的人数及其所占百分比可得总人数,再减去其它捐款数的人数求出捐款10元的人数,从而补全图形;
(2)根据众数和中位数的概念求解可得;
(3)先求出这50个人捐款的平均数,再乘以总人数即可得.
【详解】
(1)本次抽查的学生总人数为14÷28%=50(人)
则捐款10元的人数为50﹣(9+14+7+4)=16(人)
补全图形如下:
(2)捐款的众数为10元,中位数为=12.5(元)
故答案为:10、12.5;
(3)=13.1(元)
则根据样本平均数估计该校大约可捐款2000×13.1=26200(元).
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
16、(1)见解析(2)P1(--1,0),P2(0,0)P3(+1,0)
【解析】
(1)根据等边三角形的性质即可证明;(2)分三种情况讨论:①若点P在x轴负半轴上,②若点P在x轴上,③若点P在x轴正半轴上,分别进行求解即可.
【详解】
(1)证明:∵△ABC是等边三角形
∴∠ABC=∠ACB=60°
∵BD是中线
∴∠DBC=30°
∵CP=CD
∴∠CPD=∠CDP
又∵∠ACB=60°
∴∠CPD=30°
∴∠CPD=∠DBC
∴DB=DP即△DBP是等腰三角形.
(2) 解:在x轴上存在除点P以外的点Q,使△BDQ是等腰三角形
①若点P在x轴负半轴上,且BP=BD
∵BD=∴BP=
∴OP=+1
∴点P1(--1,0)
②若点P在x轴上,且BP=PD
∵∠PBD=∠PDB=30°
∴∠DPC=60°又∠PCD=60°
∴PC=DC=1
而OC=1
∴OP=0
∴点P2(0,0)
③若点P在x轴正半轴上,且BP=BD
∴BP=而OB=1
∴OP=+1
∴点P3(+1,0)
17、改进操作方法后每天加工零件55个
【解析】
设改进技术后每天加工零件x个,则改进技术前每天加工(x﹣15)个,改进前制造80个需要的时间是天,改进技术后220个需要的时间是天,根据前后共用的时间是6天建立方程求出其解即可.
【详解】
解:设改进操作方法后每天加工零件的件数为x件,
则改进操作方法前每天加工零件(x-15)个,依题意得
+=6
去分母,整理,得:x2-65x+550=0
∴x1=10,x2=55
经检验,它们都是方程的根,
但x=10时,x-15=-5不合题意,所以只能取x=55
答:改进操作方法后每天加工零件55个
本题考查了列分式方程解决工程问题,化为一元二次方程的分式方程的解法的运用,解答时根据前后共用的时间是6天建立方程是关键.解答分式方程需要验根不得忘记.
18、﹣5.
【解析】
分析:
按照二次根式的相关运算法则进行化简计算即可.
详解:
原式=2b×﹣4a×﹣3
=2﹣4﹣3
=﹣5.
点睛:熟记“二次根式的相关运算性质、法则”是正确解答本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
求出x1,x2即可解答.
【详解】
解:∵x2﹣x=0,
∴x(x﹣1)=0,
∵x1<x2,
∴解得:x1=0,x2=1,
则x2﹣x1=1﹣0=1.
故答案为:1.
本题考查一元二次方程的根求解,按照固定过程求解即可,较为简单.
20、S1=S2=S1
【解析】
根据反比例函数k的几何意义进行判断.
【详解】
解:设P1、P2、P1三点都在反比例函数y=上,
则S1=|k|,S2=|k|,S1=|k|,
所以S1=S2=S1.
故答案为S1=S2=S1.
本题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
21、
【解析】
原式= ,故答案为.
22、
【解析】
根据顶点式函数表达式即可写出.
【详解】
抛物线的顶点坐标是
故填
此题主要考查二次函数的顶点坐标,解题的关键是熟知二次函数的解析式特点.
23、2cm.
【解析】
试题解析:∵四边形ABCD为平行四边形,
∴AE∥BC,AD=BC=8cm,
∴∠AEB=∠EBC,
∵BE平分∠ABC,
∴∠ABE=∠EBC,
∴∠ABE=∠AEB,
∴AB=AE=6cm,
∴DE=AD﹣AE=8﹣6=2(cm).
二、解答题(本大题共3个小题,共30分)
24、(1);(2)如图所示见解析.
【解析】
1直接利用速度时间路程进而得出答案;
2直接利用正比例函数图象画法得出答案.
【详解】
(1)由题意可得:;
(2)如图所示:
考查了一次函数的应用,正确得出函数关系式是解题关键.
25、解:(1)见解析
(2)A;90;
(3)50
【解析】
试题分析:(1)根据正方形的性质得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易证得△ADE≌△ABF.
(2)∵△ADE≌△ABF,∴∠BAF=∠DAE.
而∠DAE+∠EBF=90°,∴∠BAF+∠EBF=90°,即∠FAE=90°.
∴△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到.
(3)先利用勾股定理可计算出AE=10,在根据△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到AE=AF,∠EAF=90°,然后根据直角三角形的面积公式计算即可.
【详解】
解:(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°.
又∵点F是CB延长线上的点,∴∠ABF=90°.
在△ADE和△ABF中,∵,
∴△ADE≌△ABF(SAS).
(2)A;90.
(3)∵BC=8,∴AD=8.
在Rt△ADE中,DE=6,AD=8,∴.
∵△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到,
∴AE=AF,∠EAF=90°.
∴△AEF的面积=AE2=×100=50(平方单位).
26、甲平均每小时行驶10千米,乙平均每小时行驶8千米
【解析】
设乙平均每小时骑行x千米,则甲平均每小时骑行(x+2)千米,根据题意可得,同样20千米的距离,乙比甲多走30分钟,据此列方程求解.
【详解】
设甲平均每小时行驶x千米,
则,
化简为:,
解得:,
经检验不符合题意,是原方程的解,
答:甲平均每小时行驶10千米,乙平均每小时行驶8千米。
本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.
题号
一
二
三
四
五
总分
得分
批阅人
笔试
面试
体能
甲
83
79
90
乙
85
80
75
丙
80
90
73
相关试卷
这是一份2024年广东省广州市广雅中学九年级数学第一学期开学综合测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年山东省青岛市广雅中学九上数学期末学业质量监测模拟试题含答案,共9页。试卷主要包含了如图,在▱ABCD中,AB等内容,欢迎下载使用。
这是一份2023-2024学年山东省青岛市广雅中学九年级数学第一学期期末学业质量监测模拟试题含答案,共7页。试卷主要包含了下列图形中,中心对称图形有,下列各数中是无理数的是等内容,欢迎下载使用。