终身会员
搜索
    上传资料 赚现金

    2024年辽宁省锦州市滨海期实验学校九上数学开学学业质量监测模拟试题【含答案】

    立即下载
    加入资料篮
    2024年辽宁省锦州市滨海期实验学校九上数学开学学业质量监测模拟试题【含答案】第1页
    2024年辽宁省锦州市滨海期实验学校九上数学开学学业质量监测模拟试题【含答案】第2页
    2024年辽宁省锦州市滨海期实验学校九上数学开学学业质量监测模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年辽宁省锦州市滨海期实验学校九上数学开学学业质量监测模拟试题【含答案】

    展开

    这是一份2024年辽宁省锦州市滨海期实验学校九上数学开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=( )
    A.1:3B.1:4C.2:3D.1:2
    2、(4分)关于函数y= -x-3的图象,有如下说法:
    ①图象过点(0,-3);②图象与x轴的交点是(-3,0);③由图象可知y随x的增大而增大; ④图象不经过第一象限;⑤图象是与y= -x+4平行的直线.其中正确的说法有( )
    A.5个B.4个C.3个D.2个
    3、(4分)为了了解某地八年级男生的身高情况,从当地某学校选取了60名男生统计身高情况,60名男生的身高(单位:cm)分组情况如下表所示,则表中a,b的值分别为( )
    A.18,6B.0.3,6
    C.18,0.1D.0.3,0.1
    4、(4分)如果,那么等于
    A.3:2B.2:5C.5:3D.3:5
    5、(4分)化简(+2)的结果是( )
    A.2+2B.2+C.4D.3
    6、(4分)下列命题中正确的是( )
    A.一组对边相等,另一组对边平行的四边形是平行四边形
    B.对角线相等的四边形是矩形
    C.对角线互相垂直的四边形是菱形
    D.对角线互相垂直平分且相等的四边形是正方形
    7、(4分)若n是实数,且n>0,则一次函数y=﹣nx+n的图象经过的象限是( )
    A.一、二、三B.一、三、四C.一、二、四D.二、三、四
    8、(4分)下表记录了四名运动员参加男子跳高选拔赛成绩的平均数与方差:
    如果选一名运动员参加比赛,应选择( )
    A.甲B.乙C.丙D.丁
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,D是△ABC中AC边上一点,连接BD,将△BDC沿BD翻折得△BDE,BE交AC于点F,若,△AEF的面积是1,则△BFC的面积为_______
    10、(4分)在△ABC中,AB=,AC=5,若 BC 边上的高等于3,则BC边的长为_____.
    11、(4分)如果一个n边形的内角和等于它的外角和的3倍,则n=______.
    12、(4分)如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)
    13、(4分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的就用了这种分割方法,若BD=2,AE=3,则正方形ODCE的边长等于________.

    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,已知,点在上,点在上.
    (1)请用尺规作图作出的垂直平分线,交于点,交于点;(保留作图痕迹,不写作法);
    (2)连结,求证四边形是菱形.
    15、(8分)如图,△ABC中,AB=AC.求作一点D,使得以A、B、C、D为顶点的四边形是菱形,并证明你作图的正确性.(要求:尺规作图,保留作图痕迹,不写作法)
    16、(8分)在数学兴趣小组活动中,小明将边长为2的正方形与边长为的正方形按如图1方式放置,与在同一条直线上,与在同一条直线上.
    (1)请你猜想与之间的数量与位置关系,并加以证明;
    (2)在图2中,若将正方形绕点逆时针旋转,当点恰好落在线段上时,求出的长;
    (3)在图3中,若将正方形绕点继续逆时针旋转,且线段与线段相交于点,写出与面积之和的最大值,并简要说明理由.
    17、(10分)已知两地相距,甲、乙两人沿同一公路从 地出发到地,甲骑摩托车,乙骑自行车,如图中分别表示甲、乙离开地的距离 与时间 的函数关系的图象,结合图象解答下列问题.
    (1)甲比乙晚出发___小时,乙的速度是___ ;甲的速度是___.
    (2)若甲到达地后,原地休息0.5小时,从地以原来的速度和路线返回地,求甲、乙两人第二次相遇时距离地多少千米?并画出函数关系的图象.
    18、(10分)如图1,已知直线y=﹣2x+4与两坐标轴分别交于点A、B,点C为线段OA上一动点,连接BC,作BC的中垂线分别交OB、AB交于点D、E.
    (l)当点C与点O重合时,DE= ;
    (2)当CE∥OB时,证明此时四边形BDCE为菱形;
    (3)在点C的运动过程中,直接写出OD的取值范围.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是 .
    20、(4分)将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是 ________
    21、(4分)如图,在锐角△ABC中,AB=4,∠ABC=45°,∠ABC的平分线交AC于点D,点P、Q分别是BD、AB上的动点,则AP+PQ的最小值为______.
    22、(4分)已知函数,则自变量x的取值范围是___________________.
    23、(4分)在中,对角线,相交于点,若,,,则的周长为_________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点;
    (1)在第一个图中,以格点为端点,画一个三角形,使三边长分别为2、、,则这个三角形的面积是_________;
    (2)在第二个图中,以格点为顶点,画一个正方形,使它的面积为10。
    25、(10分)某石化乙烯厂某车间生产甲、乙两种塑料的相关信息如下表,请你解答下列问题:
    (1)设该车间每月生产甲、乙两种塑料各x吨,利润分别为y1元和y2元,分别求出y1和y2与x的函数关系式(注:利润=总收入-总支出);
    (2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生产甲、乙塑料各多少吨时,获得的总利润最大?最大利润是多少?
    26、(12分)老师随机抽査了本学期学生读课外书册数的情况,绘制成不完整的条形统计图和不完整的扇形统计图(如图所示).
    (1)补全条形统计图;
    (2)求出扇形统计图中册数为4的扇形的圆心角的度数;
    (3)老师随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后发现册数的中位数没改变,则最多补查了 .
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴DF:AB=DE:EB.∵O为对角线的交点,∴DO=BO.又∵E为OD的中点,∴DE=DB,则DE:EB=1:1,∴DF:AB=1:1.∵DC=AB,∴DF:DC=1:1,∴DF:FC=1:2.故选D.
    2、B
    【解析】
    根据一次函数的性质和图象上点的坐标特征解答.
    【详解】
    解:①将(0,-3)代入解析式得,左边=-3,右边=-3,故图象过(0,-3)点,正确;
    ②当y=0时,y=-x-3中,x=-3,故图象过(-3,0),正确;
    ③因为k=-1<0,所以y随x增大而减小,错误;
    ④因为k=-1<0,b=-3<0,所以图象过二、三、四象限,正确;
    ⑤因为y=-x-3与y= -x+4的k值(斜率)相同,故两图象平行,正确.
    故选:B.
    本题考查一次函数的性质和图象上点的坐标特征,要注意:在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
    3、C
    【解析】
    解:因为a=61×1.3=18,
    所以第四组的人数是:61﹣11﹣26﹣18=6,
    所以b==1.1,
    故选C.
    本题考查频数(率)分布表.
    4、B
    【解析】
    根据比例的基本性质(两内项之积等于两外项之积)和合比定理【如果a:b=c:d,那么(a+b):b=(c+d):d (b、d≠0)】解答并作出选择.
    【详解】
    ∵=的两个内项是b、2,两外项是a、3,
    ∴,
    ∴根据合比定理,得
    ,即;
    同理,得
    =2:5.
    故选B.
    本题考查比例的性质,熟练掌握比例的基本性质是解题关键.
    5、A
    【解析】
    试题解析:(+2)= 2+2.
    故选A.
    6、D
    【解析】
    根据根据矩形、菱形、正方形和平行四边形的判定方法对各选项进行判断.
    【详解】
    A.一组对边相等且平行的四边形是平行四边形,所以A选项错误。
    B. 对角线相等的平行四边形是矩形,所以B选项错误;
    C. 对角线互相垂直的平行四边形是菱形,所以C选项错误;
    D. 对角线互相垂直平分且相等的四边形是正方形,所以D选项正确;
    故选D
    此题考查命题与定理,解题关键在于掌握各判定法则
    7、C
    【解析】
    根据题意,在一次函数y=﹣nx+n中,﹣n<0,n>0,结合函数图象的性质可得答案.
    【详解】
    解:根据题意,在一次函数y=﹣nx+n中,﹣n<0,n>0,
    则函数的图象过一、二、四象限,
    故选:C.
    本题考查一次函数的图象的性质,应该识记一次函数y=kx+b在k、b符号不同情况下所在的象限.
    8、B
    【解析】
    【分析】根据方差的意义先比较出甲、乙、丙、丁的大小,再根据平均数的意义即可求出答案.
    【详解】∵=3.5,=3.5,=12.5,=15,
    ∴=<<,
    ∵=173,=175,=175,=174,
    ∴=>>,
    ∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择乙,
    故选B.
    【点睛】本题考查了平均数和方差,一般地设n个数据,x1,x2,…xn的平均数为,则方差=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、2.5
    【解析】
    由,可得,由折叠可知,
    可得,由可得,则,又,可得,即可求得,然后求得.
    【详解】
    解:∵,
    ∴,
    由折叠可知,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    解得:,
    ∴;
    故答案为2.5.
    本题主要考查了折叠问题,翻折变换(折叠问题)实质上就是轴对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解题的关键是由线段的关系得到面积的关系.
    10、6或1
    【解析】
    △ABC中,∠ACB分锐角和钝角两种:
    ①如图1,∠ACB是锐角时,根据勾股定理计算BD和CD的长可得BC的值;
    ②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,根据BC=BD-CD代入可得结论.
    【详解】
    解:有两种情况:
    ①如图1,∵AD是△ABC的高,
    ∴∠ADB=∠ADC=90°,
    由勾股定理得:BD==1,
    CD==4,
    ∴BC=BD+CD=5+1=6;
    ②如图2同理得:CD=4,BD=1,
    ∴BC=BD-CD=4-1=1,
    综上所述,BC的长为6或1;
    故答案为6或1.
    本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.
    11、1
    【解析】
    根据多边形内角和公式110°(n-2)和外角和为360°可得方程110(n-2)=360×3,再解方程即可.
    【详解】
    解:由题意得:110(n-2)=360×3,
    解得:n=1,
    故答案为:1.
    此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.
    12、∠B=∠1或
    【解析】
    此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.
    【详解】
    此题答案不唯一,如∠B=∠1或.
    ∵∠B=∠1,∠A=∠A,
    ∴△ADE∽△ABC;
    ∵,∠A=∠A,
    ∴△ADE∽△ABC;
    故答案为∠B=∠1或
    此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题.
    13、1
    【解析】
    设正方形ODCE的边长为x,则CD=CE=x,根据全等三角形的性质得到AF=AE,BF=BD,根据勾股定理即可得到结论.
    【详解】
    解:设正方形ODCE的边长为x,
    则CD=CE=x,
    ∵△AFO≌△AEO,△BDO≌△BFO,
    ∴AF=AE,BF=BD,
    ∴AB=2+3=5,
    ∵AC2+BC2=AB2,
    ∴(3+x)2+(2+x)2=52,
    ∴x=1,
    ∴正方形ODCE的边长等于1,
    故答案为:1.
    本题考查了勾股定理的证明,全等三角形的性质,正方形的性质,熟练掌握勾股定理是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)详见解析;(2)详见解析.
    【解析】
    (1)按照尺规作图的步骤作出图形即可;
    (2)证明AC垂直平分EF,则根据对角线互相垂直平分的四边形为菱形得到四边形AECF是菱形.
    【详解】
    解:(1)如图,就是所求作的的垂直平分线,
    (2)证明:∵四边形ABCD为平行四边形,
    ∴AD∥BC,
    ∴∠AFE=∠CEF,
    ∵EF垂直平分AC,
    ∴EA=EC,EF⊥AC,
    ∴∠CEF=∠AEF,
    ∴∠AFE=∠AEF,
    ∴AE=AF,
    ∴AC垂直平分EF,
    ∴四边形AECF是菱形.
    本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定.
    15、见解析
    【解析】
    分别以B,C为圆心,以AB长画弧,两弧相交一点,即为D点.
    【详解】
    如图即为所求作的菱形
    理由如下:
    ∵AB=AC,BD=AB,CD=AC,
    ∴AB=BD=CD=AC,
    ∴四边形ABDC是菱形.
    本题考查尺规作图和菱形的性质,解题的关键是掌握尺规作图和菱形的性质.
    16、(1),,其理由见解析;(2);(3)6
    【解析】
    (1)由四边形ABCD与四边形AEFG为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS得到三角形ADG与三角形ABE全等,利用全等三角形对应角相等得∠AGD=∠AEB,如图1所示,延长EB交DG于点H,利用等角的余角相等得到∠DHE=90°,利用垂直的定义即可得DG⊥BE;
    (2)由四边形ABCD与四边形AEFG为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS得到三角形ADG与三角形ABE全等,利用全等三角形对应边相等得到DG=BE,如图2,连接交于,则=°=,在Rt△AMD中,求出AO的长,即为DO的长,根据勾股定理求出GO的长,进而确定出DG的长,即为BE的长;
    (3)△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,即当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,即当点H与点A重合时,△BDH的高最大,即可确定出面积的最大值.
    【详解】
    (1)
    证明:,,其理由是:
    在正方形和正方形中,
    有,,,
    ∴≌,∴,,
    ∵,∴
    延长交于,则,
    ∴.
    (2)
    解:在正方形和正方形中,
    有,,,

    ∴≌,∴
    连接交于,则,
    ∴,,


    (3)
    与面积之和的最大值为6,其理由是:
    对于,长一定,当到的长度最大时,的面积最大,由(1)(2))△GHE和△BHD面积之和的最大值为6,理由为:
    对于△EGH,点H在以EG为直径的圆上,
    ∴当点H与点A重合时,△EGH的高最大;
    对于△BDH,点H在以BD为直径的圆上,
    ∴当点H与点A重合时,△BDH的高最大,
    则△GHE和△BHD面积之和的最大值为2+4=6.
    本题为几何变换综合题,(1)一般要问两条线段的关系,得分两个方面讨论,一个是长度关系,一个是位置关系(不是平行就是垂直),一般证明长度相等只需要证明三角形全等即可;(2)(1)中已经证明的结论一般为(2)作铺垫,所以只需要求出BE即可求出DG,这里因为出现直角三角形,所求线段的长度,用到了勾股定理;(3)这里主要用到直径所对的圆周角等于90°即可得到H同时在以BD和GH为直径的弦上,此时H在A处时,高最大,为圆的半径.
    17、(1)1,15,60;(2)42,画图见解析.
    【解析】
    (1)根据函数图象可以解答本题;
    (2)根据题意画出函数图像,可以求得所在直线函数解析式和所在直线的解析式,从而可以解答本题.
    【详解】
    解:(1)由图象可得,甲比乙晚出发1小时,乙的速度是:30÷2=15km/h,甲的速度是:60÷1=60km/h,
    故答案为1,15,60;
    (2)画图象如图.
    设甲在返回时对应的所在直线函数解析式为:,
    由题意可知,M(2.5,60),N(3.5,0),
    将点M、N代入可得: ,解得
    甲在返回时对应的函数解析式为:
    设所在直线的解析式为:,
    ∴,解得,
    所在直线的解析式为:,
    联立,
    消去得
    答:甲、乙两人第二次相遇时距离地42千米.
    本题考查一次函数的应用,解题的关键是明确题意,正确识图并找出所求问题需要的条件.
    18、(1)1;(1)证明见解析;(3)≤OD≤1.
    【解析】
    (1)画出图形,根据DE垂直平分BC,可得出DE是△BOA的中位线,从而利用中位线的性质求出DE的长度;
    (1)先根据中垂线的性质得出DB=DC,EB=EC,然后结合CE∥OB判断出BE∥DC,得出四边形BDCE为平行四边形,结合DB=DC可得出结论.
    (3)求两个极值点,①当点C与点A重合时,OD取得最小值,②当点C与点O重合时,OD取得最大值,继而可得出OD的取值范围.
    【详解】
    解:∵直线AB的解析式为y=﹣1x+4,
    ∴点A的坐标为(1,0),点B的坐标为(0,4),即可得OB=4,OA=1,
    (1)当点C与点O重合时如图所示,
    ∵DE垂直平分BC(BO),
    ∴DE是△BOA的中位线,
    ∴DE=OA=1;
    故答案为:1;
    (1)当CE∥OB时,如图所示:
    ∵DE为BC的中垂线,
    ∴BD=CD,EB=EC,
    ∴∠DBC=∠DCB,∠EBC=∠ECB,
    ∴∠DCE=∠DBE,
    ∵CE∥OB,
    ∴∠CEA=∠DBE,
    ∴∠CEA=∠DCE,
    ∴BE∥DC,
    ∴四边形BDCE为平行四边形,
    又∵BD=CD,
    ∴四边形BDCE为菱形.
    (3)当点C与点O重合时,OD取得最大值,此时OD=OB=1;
    当点C与点A重合时,OD取得最小值,如图所示:
    在Rt△AOB中,AB==1,
    ∵DE垂直平分BC(BA),
    ∴BE=BA=,
    易证△BDE∽△BAO,
    ∴,即,
    解得:BD=,
    则OD=OB﹣BD=4﹣=.
    综上可得:≤OD≤1.
    本题考查一次函数综合题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1.
    【解析】
    利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解:
    ∵BD⊥CD,BD=4,CD=3,∴.
    ∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC.
    ∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC.
    又∵AD=6,∴四边形EFGH的周长=6+5=1.
    20、(0,0)
    【解析】
    解:将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是(1-1,2-2),即(0,0).
    故答案填:(0,0).
    点评:此题主要考查图形的平移及平移特征.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
    21、2
    【解析】
    作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.
    【详解】
    解:作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.
    ∵BD平分∠ABC,P′H⊥BC,P′Q′⊥AB,
    ∴P′Q′=P′H,
    ∴AP′+P′Q′=AP′+P′H=AH,
    根据垂线段最短可知,PA+PQ的最小值是线段AH的长,
    ∵AB=4,∠AHB=90°,∠ABH=45°,
    ∴AH=BH=2,
    故答案为:2.
    本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.
    22、
    【解析】
    分析:根据函数的自变量取值范围的确定方法,从分式和二次根式有意义的条件列不等式求解即可.
    详解:由题意可得
    解得x≥-2且x≠3.
    故答案为:x≥-2且x≠3.
    点睛:此题主要考查了函数的自变量的取值范围,关键是明确函数的构成:二次根式的被开方数为非负数,分式的分母不等于0等条件.
    23、21
    【解析】
    由在平行四边形ABCD中,AC=14,BD=8,AB=10,利用平行四边形的性质,即可求得OA与OB的长,继而求得△OAB的周长.
    【详解】
    ∵在平行四边形ABCD中,AC=14,BD=8,AB=10,
    ∴OA=AC=7,OB=BD=4,
    ∴△OAB的周长为:AB+OB+OA=10+7+4=21.
    故答案为:21.
    本题考查平行四边形的性质,熟练掌握平行四边形的性质和计算法则是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)图见解析,三角形面积为2;(2)见解析.
    【解析】
    (1)利用数形结合的思想解决问题即可,
    (2)作出边长为 的正方形即可.
    【详解】
    解:(1)如图①中,△ABC即为所求,因,
    所以△ABC为直角三角形,则,
    故答案为2;
    (2)如图2中,正方形ABCD即为所求.
    本题考查作图-应用与设计,勾股定理,正方形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.
    25、(1)与x的函数关系式为=1100x;与x的函数关系式为=1200x-20000;(2)该月生产甲、乙两种塑料分别为300吨和2吨时总利润最大,最大总利润是790000元.
    【解析】
    (1)因为利润=总收入﹣总支出,由表格可知,y1=(2100﹣800﹣200)x=1100x,y2=(22﹣1100﹣100)x﹣20000=1200x﹣20000;
    (2)可设该月生产甲种塑料x吨,则乙种塑料(700﹣x)吨,总利润为W元,建立W与x之间的解析式,又因甲、乙两种塑料均不超过2吨,所以x≤2,700﹣x≤2,这样就可求出x的取值范围,然后再根据函数中y随x的变化规律即可解决问题.
    【详解】
    详解:(1)依题意得:y1=(2100﹣800﹣200)x=1100x,
    y2=(22﹣1100﹣100)x﹣20000=1200x﹣20000;
    (2)设该月生产甲种塑料x吨,则乙种塑料(700﹣x)吨,总利润为W元,依题意得:W=1100x+1200(700﹣x)﹣20000=﹣100x+1.
    ∵,
    解得:300≤x≤2.
    ∵﹣100<0,
    ∴W随着x的增大而减小,
    ∴当x=300时,W最大=790000(元).
    此时,700﹣x=2(吨).
    因此,生产甲、乙塑料分别为300吨和2吨时总利润最大,最大利润为790000元.
    本题需仔细分析表格中的数据,建立函数解析式,值得一提的是利用不等式组求自变量的取值范围,然后再利用函数的变化规律求最值这种方法.
    26、(1)见解析(2)75°(3)3人
    【解析】
    (1)用读书为6册的人数除以它所占的百分比得到调查的总人数;再用总人数分别减去读书为4册、6册和7册的人数得到读书5册的人数,即可解答
    (2)用4册的人数除以总人数乘以360°即可解答
    (3)根据中位数的定义可判断总人数不能超过27,从而得到最多补查的人数.
    【详解】
    (1)抽查的学生总数为6÷25%=24(人),
    读书为5册的学生数为24-5-6-4=9(人)
    则条形统计图为:
    (2) =75°
    (3)因为4册和5册的人数和为14,中位数没改变,所以总人数不能超过27,即最多补查了3人.
    此题考查条形统计图,扇形统计图,中位数的定义,解题关键在于看懂图中数据
    题号





    总分
    得分
    分组
    147.5~157.5
    157.5~167.5
    167.5~177.5
    177.5~187.5
    频数
    10
    26
    a
    频率
    0.3
    b




    平均数
    173
    175
    175
    174
    方差
    3.5
    3.5
    12.5
    15
    出厂价
    成本价
    排污处理费
    甲种塑料
    2100(元/吨)
    800(元/吨)
    200(元/吨)
    乙种塑料
    2400(元/吨)
    1100(元/吨)
    100(元/吨)
    另每月还需支付设备管理、维护费20000元

    相关试卷

    2024年辽宁省昌图县九上数学开学学业质量监测模拟试题【含答案】:

    这是一份2024年辽宁省昌图县九上数学开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省期无锡市天一实验学校九上数学开学学业质量监测模拟试题【含答案】:

    这是一份2024-2025学年江苏省期无锡市天一实验学校九上数学开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年广东省广州白云广雅实验学校数学九上开学学业质量监测模拟试题【含答案】:

    这是一份2024-2025学年广东省广州白云广雅实验学校数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map