2024年湖南长沙市长郡教育集团数学九年级第一学期开学监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一次函数y=x+4的图象不经过的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
2、(4分)要使式子在实数范围内有意义,则x的取值范围是( )
A.x≥1B.x<1C.x≤1D.x≠1
3、(4分)一组数据1,2,的平均数为2,另一组数据-l,,1,2,b的唯一众数为-l,则数据-1,,,1,2的中位数为( )
A.-1B.1C.2D.3
4、(4分)整数满足,则的值为
A.4B.5C.6D.7
5、(4分)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=20,CE=15,CF=7,AF=24,则BE的长为( )
A.10B.C.15D.
6、(4分)化简的结果为( )
A.﹣B.﹣yC.D.
7、(4分)如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为( )
A.x<-2B.-2<x<-1C.-2<x<0D.-1<x<0
8、(4分)下列窗花图案中,是轴对称图形的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)因式分解:a2﹣6a+9=_____.
10、(4分)如果点A(1,m)与点B(3,n)都在反比例函数y=(k>0)的图象上,那么代数式m-3n+6的值为______.
11、(4分)小数0.00002l用科学记数法表示为_____.
12、(4分)某物体对地面的压强随物体与地面的接触面积之间的变化关系如图所示(双曲线的一支).如果该物体与地面的接触面积为,那么该物体对地面的压强是__________.
13、(4分)当k=_____时,100x2﹣kxy+49y2是一个完全平方式.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在菱形ABCD中,AB=5,∠DAB=60°,点E是AD边的中点.点M是线段AB上的一个动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为 时,四边形AMDN是矩形;
②当AM的值为 时,四边形AMDN是菱形.
15、(8分)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接DE并延长至点F,使EF=DE,连接AF,DC.求证:四边形ADCF是菱形.
16、(8分)根据指令[s,α](s≥0,0°<α<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度α,再朝其面对的方向沿直线行走距离s,现机器人在直角坐标系的坐标原点,且面对x轴正方向.
(1)若给机器人下了一个指令[4,60°],则机器人应移动到点______;
(2)请你给机器人下一个指令_________,使其移动到点(-5,5).
17、(10分)已知函数,
(1)当m取何值时抛物线开口向上?
(2)当m为何值时函数图像与x轴有两个交点?
(3)当m为何值时函数图像与x轴只有一个交点?
18、(10分)(1)因式分解:
(2)解方程:
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,等腰中,,,线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于______.
20、(4分)如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为xcm,△PAB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为_____.
21、(4分)解分式方程+=时,设=y,则原方程化为关于y的整式方程是______.
22、(4分)若分式的值为0,则__.
23、(4分)在盒子里放有三张分别写有整式a+1、a+2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)在菱形ABCD中,AC是对角线.
(1)如图①,若AB=6,则菱形ABCD的周长为______;若∠DAB=70º,则∠D的度数是_____;∠DCA的度数是____;
(2)如图②,P是AB上一点,连接DP交对角线AC于点E,连接EB,求证: ∠APD=∠EBC.
25、(10分)如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(-1,2)、B两点,求m、n的值并直接写出点B的坐标.
26、(12分)如图,已知,在平面直角坐标系中,A(﹣3,﹣4),B(0,﹣2).
(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标.
(2)判断以A,B,A1,B1为顶点的四边形的形状,请直接在答卷上填写答案.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据k,b的符号判断一次函数的图象所经过的象限.
【详解】
由题意,得:k>0,b>0,故直线经过第一、二、三象限.
即不经过第四象限.
故选:D.
考查一次函数的图象与系数的关系.熟练掌握系数与一次函数图象之间的关系是解题的关键.
2、A
【解析】
根据被开方数大于等于0,列式得,x﹣1≥0,解不等式即可.
【详解】
解:根据被开方数大于等于0,列式得,x﹣1≥0,解得x≥1.
故选A.
本题考查二次根式有意义的条件,掌握被开方数为非负数是本题的解题关键.
3、B
【解析】
试题解析:∵一组数据1,2,a的平均数为2,
∴1+2+a=3×2
解得a=3
∴数据-1,a,1,2,b的唯一众数为-1,
∴b=-1,
∴数据-1,3,1,2,b的中位数为1.
故选B.
点睛:中位数就是讲数据按照大小顺序排列起来,形成一个数列,数列中间位置的那个数.
4、A
【解析】
根据16<24<25,得出的取值范围,即可确定n的值.
【详解】
解:∵,且16<24<25,
∴4<<5,
∴n=4,
故选:A.
本题考查了估算无理数的大小,运用“夹逼法”是解决本题的关键.
5、C
【解析】
分析:根据平行四边形的面积,可得设 则在Rt中,用勾股定理即可解得.
详解:∵四边形ABCD是平行四边形,
∴
∴
设 则
在Rt中,
即
解得(舍去),
故选C.
点睛:考查了平行四边形的面积,平行四边形的性质,勾股定理等,难度较大,根据面积得出是解题的关键.
6、D
【解析】
先因式分解,再约分即可得.
【详解】
故选D.
本题主要考查约分,由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.
7、B
【解析】
试题分析:根据不等式2x<kx+b<0体现的几何意义得到:直线y=kx+b上,点在点A与点B之间的横坐标的范围.
解:不等式2x<kx+b<0体现的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那部分点,
显然,这些点在点A与点B之间.
故选B.
8、A
【解析】
根据轴对称图形的概念求解.
【详解】
解:A、是轴对称图形,符合题意;
B、不是轴对称图形,不合题意;
C、不是轴对称图形,不合题意;
D、不是轴对称图形,不合题意.
故选:A.
本题考查了轴对称图形的识别,熟练掌握基本概念是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
试题分析:直接运用完全平方公式分解即可.a2-6a+9=(a-3)2.
考点:因式分解.
10、1
【解析】
点A(1,m)与点B(3,n)都在反比例函数y=(k>0)的图象上,代入可求出m、n,进而求代数式的值.
【详解】
解;把点A(1,m)、B(3,n)代入y=得:m=3,n=1
∴m-3n+1=3-3×1+1=1.
故答案为:1.
考查反比例函数图象上点的坐标特点,理解函数图象的意义,正确的代入和细心的计算是解决问题的前提.
11、2.1×10﹣1
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:小数0.00002l用科学记数法表示为2.1×10-1.
故答案为2.1×10-1.
本题考查了用科学记数法表示较小的数,一般形式为a×,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
12、500
【解析】
首先通过反比例函数的定义计算出比例系数k的值,然后可确定其表达式,再根据题目中给出的自变量求出函数值
【详解】
根据图象可得
当S=0.24时,P= =500,即压强是500Pa.
此题考查反比例函数的应用,列方程是解题关键
13、±1.
【解析】
利用完全平方公式的结构特征判断即可得到结果.完全平方公式(a±b)2= a2±2ab+b2.
【详解】
∵100x2﹣kxy+49y2是一个完全平方式,
∴k=±1.
故答案为:±1.
此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析(2)① ②5
【解析】
(1)四边形ABCD是菱形,则ND∥AM,故∠NDE=∠MAE,∠DNE=∠AME.由于E是AD边的中点,则DE=AE.由全等三角形的判定定理,得出△NDE≌△MAE,故ND=MA.
根据平行四边形的判定方法,即可得出四边形AMDN是平行四边形.
【详解】
(1)证明:∵四边形ABCD是菱形,
∴ND∥AM,
∴∠NDE=∠MAE,∠DNE=∠AME,
又∵点E是AD边的中点,
∴DE=AE,
∴△NDE≌△MAE,
∴ND=MA,
∴四边形AMDN是平行四边形;
(2)解:① 若四边形AMDN是矩形,则∠DMA=90°,
在△AMD中,∠DMA=90°,∠DAB=60°,则∠ADM=30°.
在Rt△AMD中,∠AMD=30°,故AM=AD=.
②若四边形AMDN是菱形,则ADMN,
在Rt△MEA中,∠DAB=60°,则∠EMA=30°,
故AE=AM,即AM=2AE,
由于E是AD的中点,则AE=,
所以AM=2×=5.
本题是考查平行四边形的判定方法、菱形的性质、直角三角形的性质的综合性题目.熟练掌握平行四边形、菱形、直角三角形的性质及判定方法是解决本题的关键,本题也是中考题目常考题型.
15、证明见解析.
【解析】
试题分析:先证明四边形ADCF是平行四边形,再证明DE是△ABC的中位线,得出DE∥BC,证出AC⊥DF,即可得出结论.
试题解析:证明:∵E是AC的中点,∴AE=CE.
∵EF=DE,
∴四边形ADCF是平行四边形.
∵D、E分别是AB、AC的中点,
∴DE∥BC.
∴∠AED=∠ACB.
∵∠ACB=90°,
∴∠AED=90°,即AC⊥DF.
∴□ADCF是菱形.
16、(1)(2,);(2)[,135]
【解析】
试题分析:认真分析题中所给的指令即可得到结果.
(1)先逆时针旋转60°,再前进4,所以到达的点的坐标是(2,);
(2)要使机器人能到达点(-5,5),应对其下达[,135]
考点:本题考查的是点的坐标
点评:解答本题的关键是读懂题意,正确理解指令[S, A]中的S和A所分别代表是含义.
17、(1);(2)且;(3)或
【解析】
(1)开口方向向上,即m-1>0,然后求解即可;
(2)当与x轴有两个交点,即对应的一元二次方程的判别式大于零;
(3)当与x轴有一个交点,即对应的一元二次方程的判别式等于零或者本身就是一次函数.
【详解】
解:(1)∵,
∴.
(2)且,
,
∴且.
(3)或,
∴或.
本题考查了二次函数和一元二次方程的关系,特别是与x轴交点的个数与方程的判别式的关系是解答本题的关键.
18、(1),(2)
【解析】
(1)先提公因式,再利用平方差公式即可,(2)移项,利用因式分解的方法求解即可.
【详解】
解:(1)
(2)因为:
所以:
所以:
所以:或
所以:.
本题考查因式分解与一元二次方程的解法,熟练掌握因式分解,一元二次方程的解法并选择合适的方法解题是关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、45°
【解析】
由等腰△ABC中,AB=AC,∠A=30°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.
【详解】
∵等腰△ABC中,AB=AC,∠A=30°,∴∠ABC=(180°-30°)÷2=75°,
∵DE是线段AB垂直平分线的交点,
∴AE=BE,∠A=∠ABE=30°,
∴∠CBE=∠ABC-∠ABE=75°-30°=45°.
此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.
20、14
【解析】
根据图象点P到达C时,△PAB的面积为6,由BC=4,∠B=120°可求得AB=6,H横坐标表示点P从B开始运动到A的总路程,则问题可解.
【详解】
由图象可知,当x=4时,点P到达C点,此时△PAB的面积为6
∵∠B=120°,BC=4
∴
解得AB=6
H点表示点P到达A时运动的路程为4+6+4=14
故答案为14
本题为动点问题的函数图象探究题,考查了一次函数图象性质,解答时注意研究动点到达临界点前后函数图象的变化.
21、y2-y+1=1
【解析】
根据换元法,可得答案.
【详解】
解:设=y,则原方程化为y+-=1
两边都乘以y,得
y2-y+1=1,
故答案为:y2-y+1=1.
本题考查了解分式方程,利用换元法是解题关键.
22、2
【解析】
根据分式的值为零的条件即可求出答案.
【详解】
解:由题意可知:,
解得:,
故答案为:2;
本题考查分式的值为零,解题的关键是正确理解分式的值为零的条件,本题属于基础题型.
23、.
【解析】
解:画树状图得:
∴一共有6种等可能的结果,把两张卡片上的整式分别作为分子和分母,能组成分式的有4个,
∴能组成分式的概率是
故答案为.
此题考查了列表法或树状图法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.
二、解答题(本大题共3个小题,共30分)
24、(1)24;110°;35°;(2)见解析.
【解析】
(1)由菱形的性质可求解;
(2)由“SAS”可得△DCE≌△BCE,可得∠CDP=∠CBE,由平行线的性质可得∠CDP=∠APD=∠CBE.
【详解】
解:(1)∵四边形ABCD是菱形
∴AB=BC=CD=AD=6,∠DAB+∠ADC=180°,
∠DCA=∠DCB=∠DAB=35°
∴菱形ABCD的周长=4×6=24,
∠ADC=180°-70°=110°,
故答案为:24,110°,35°
(2)证明:∵菱形ABCD
∴CD//AB,CD=CB,CA平分∠BCD
∴∠CDE=∠APD,∠ACD=∠ACB
∵CD=CB,∠BCE=∠DCE,CE=CE
∴△CBE≌△CDE(SAS)
∴∠CBE=∠CDE
∴∠CBE=∠APD.
本题考查了菱形的性质,全等三角形判定和性质,熟练运用菱形的性质是本题的关键.
25、m=-2,n=-2,B(1,-2).
【解析】
利用待定系数法即可解决问题,根据对称性或利用方程组确定点B坐标.
【详解】
解:∵直线y=mx与双曲线相交于A(-1,2),
∴m=-2,n=-2,
∵A,B关于原点对称,
∴B(1,-2).
本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,属于中考常考题型.
26、(1)A1(3,4)、B1(0,2);(2)四边形ABA1B1是平行四边形.
【解析】
(1)由于△OAB绕O点旋转180°得到△OA1B1,利用关于原点中心对称的点的坐标特征得到A1,B1的坐标,然后描点,再连结OB1、OA1和A1B1即可;
(2)根据中心对称的性质得OA=OA1,OB=OB1,则利用对角线互相平分得四边形为平行四边形可判断四边形ABA1B1为平行四边形.
【详解】
解:(1)如图图所示,△OA1B1即为所求,
A1(3,4)、B1(0,2);
(2)由图可知,OB=OB1=2、OA=OA1==5,
∴四边形ABA1B1是平行四边形.
本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平行四边形的判定.
题号
一
二
三
四
五
总分
得分
批阅人
2024年湖南省长沙市长郡集团九上数学开学质量跟踪监视试题【含答案】: 这是一份2024年湖南省长沙市长郡集团九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖南长沙市长郡教育集团2023-2024学年九上数学期末学业质量监测试题含答案: 这是一份湖南长沙市长郡教育集团2023-2024学年九上数学期末学业质量监测试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2023年湖南省长沙市长郡教育集团中考二模数学试题(含答案): 这是一份2023年湖南省长沙市长郡教育集团中考二模数学试题(含答案),共15页。