终身会员
搜索
    上传资料 赚现金

    2024年湖南省益阳市名校数学九上开学经典模拟试题【含答案】

    立即下载
    加入资料篮
    2024年湖南省益阳市名校数学九上开学经典模拟试题【含答案】第1页
    2024年湖南省益阳市名校数学九上开学经典模拟试题【含答案】第2页
    2024年湖南省益阳市名校数学九上开学经典模拟试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年湖南省益阳市名校数学九上开学经典模拟试题【含答案】

    展开

    这是一份2024年湖南省益阳市名校数学九上开学经典模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若一个多边形的每个内角都等于150°,则这个多边形的边数是( )
    A.10B.11C.12D.13
    2、(4分)如图,已知四边形ABCD是边长为4的正方形,E为CD上一点,且DE=1,F为射线BC上一动点,过点E作EG⊥AF于点P,交直线AB于点G.则下列结论中:①AF=EG;②若∠BAF=∠PCF,则PC=PE;③当∠CPF=45°时,BF=1;④PC的最小值为﹣1.其中正确的有( )
    A.1个B.1个C.3个D.4个
    3、(4分)已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为( )
    A.45,48B.44,45C.45,51D.52,53
    4、(4分)如果中不含的一次项,则( )
    A.B.C.D.
    5、(4分)计算()2的结果是( )
    A.-2B.2C.±2D.4
    6、(4分)如图,△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则∠BAD的度数为( )
    A.65°B.60°
    C.55°D.45°
    7、(4分)已知一个正多边形的每个外角等于,则这个正多边形是( )
    A.正五边形B.正六边形C.正七边形D.正八边形
    8、(4分)在直角三角形中,如果有一个角是30°,那么下列各比值中,是这个直角三角形的三边之比的是()
    A.1∶2∶3B.2∶3∶4
    C.1∶4∶9D.1∶∶2
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图是甲、乙两射击运动员的10次射击训练成绩的折射线统计图,则射击成绩较稳定的是__________(填“甲”或“乙”)。

    10、(4分)如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=______.
    11、(4分)某学生会倡导的“爱心捐款”活动结束后,学生会干部对捐款情况作了抽样调查,并绘制了统计图,图中从左到右各长方形高度之比为,又知此次调查中捐15元和20元的人数共26人.
    (1)他们一共抽查了______人;
    (2)抽查的这些学生,总共捐款______元.
    12、(4分)▱ABCD的周长是30,AC、BD相交于点O,△OAB的周长比△OBC的周长大3,则AB=_____.
    13、(4分)已知,则的值为________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在正方形ABCD 中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE.
    (1)若正方形ABCD边长为3,DF=4,求CG的长;
    (2)求证:EF+EG=CE.
    15、(8分)武胜县白坪—飞龙乡村旅游度假村橙海阳光景点组织辆汽车装运完三种脐橙共吨到外地销售.按计划,辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:
    设装运种脐橙的车辆数为,装运种脐橙的车辆数为,求与之间的函数关系式;
    如果装运每种脐橙的车辆数都不少于辆,那么车辆的安排方案有几种?
    设销售利润为(元),求与之间的函数关系式;若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.
    16、(8分)已知坐标平面内的三个点、、.
    (1)比较点到轴的距离与点到轴距离的大小;
    (2)平移至,当点和点重合时,求点的坐标;
    (3)平移至,需要至少向下平移超过 单位,并且至少向左平移 个单位,才能使位于第三象限.
    17、(10分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).
    (1)求b,m的值;
    (2)垂直于x轴的直线与直线l1,l2,分别交于点C,D,垂足为点E,设点E的坐标为(a,0)若线段CD长为2,求a的值.
    18、(10分)暑假期间,两位家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社.经协商,甲旅行社的优惠条件是:两位家长全额收费,学生都按7折收费;乙旅行社的优惠条件是:学生、家长都按8折收费.假设这两位家长带领x名学生去旅行,甲、乙旅行社的收费分别为y甲,y乙,
    (1)写出y甲,y乙与x的函数关系式.
    (2)学生人数在什么情况下,选择哪个旅行社合算?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去.则第2016个正方形的边长为_____
    20、(4分)已知一组数据有40个,把它分成五组,第一组、第二组、第四组、第五组的频数分别是10,8,7,6,第三组频数是________.
    21、(4分)在直角坐标系中,直线与y轴交于点,按如图方式作正方形、、…,、、…在直线上,点、、…,在x轴上,图中阴影部分三角形的面积从左到右依次记为、、、..,则的值为________.
    22、(4分)命题“对角线相等的四边形是矩形”的逆命题是_____________.
    23、(4分)若某组数据的方差计算公式是S2=[(7-)+(4-)2+(3-)2+(6-)2],则公式中=______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在平面直角坐标系xOy中,已知直线AB经过点A(﹣2,0),与y轴的正半轴交于点B,且OA=2OB.
    (1)求直线AB的函数表达式;
    (2)点C在直线AB上,且BC=AB,点E是y轴上的动点,直线EC交x轴于点D,设点E的坐标为(0,m)(m>2),求点D的坐标(用含m的代数式表示);
    (3)在(2)的条件下,若CE:CD=1:2,点F是直线AB上的动点,在直线AC上方的平面内是否存在一点G,使以C,G,F,E为顶点的四边形是菱形?若存在,请求出点G的坐标;若不存在,请说明理由.
    25、(10分)初中生的视力状况受到社会的广泛关注,某市有关部门对全市3万名初中生的视力状况进行了一次抽样调查,下图是利用所得数据绘制的频数分布直方图,根据图中所提供的信息回答下列问题:
    (1)本次调查共抽测了多少名学生?
    (2)在这个问题中的样本指什么?
    (3)如果视力在4.9-5.1(含4.9和5.1)均属正常,那么全市有多少名初中生视力正常?
    26、(12分)如图,边长为1的菱形中,,连结对角线,以为边作第二个菱形,使,连结,再以为边作第三个菱形使…按此规律所作的第2019个菱形的边长是__________.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据多边形的内角和定理:(n−2)×180°求解即可.
    【详解】
    解:由题意可得:180°•(n﹣2)=150°•n,
    解得n=1.
    故多边形是1边形.
    故选:C.
    主要考查了多边形的内角和定理.n边形的内角和为:(n−2)×180°.此类题型直接根据内角和公式计算可得.
    2、C
    【解析】
    连接AE,过E作EH⊥AB于H,则EH=BC,根据全等三角形的判定和性质定理即可得到AF=EG,故①正确;根据平行线的性质和等腰三角形的性质即可得到PE=PC;故②正确;连接EF,推出点E,P,F,C四点共圆,根据圆周角定理得到∠FEC=∠FPC=45°,于是得到BF=DE=1,故③正确;取AE 的中点O,连接PO,CO,根据直角三角形的性质得到AO=PO=AE,推出点P在以O为圆心,AE为直径的圆上,当O、C、P共线时,CP的值最小,根据三角形的三边关系得到PC≥OC﹣OP,根据勾股定理即可得到结论.
    【详解】
    连接AE,过E作EH⊥AB于H,
    则EH=BC,
    ∵AB=BC,
    ∴EH=AB,
    ∵EG⊥AF,
    ∴∠BAF+∠AGP=∠BAF+∠AFB=90°,
    ∴∠EGH=∠AFB,
    ∵∠B=∠EHG=90°,
    ∴△HEG≌△ABF(AAS),
    ∴AF=EG,故①正确;
    ∵AB∥CD,
    ∴∠AGE=∠CEG,
    ∵∠BAF+∠AGP=90°,∠PCF+∠PCE=90°,
    ∵∠BAF=∠PCF,
    ∴∠AGE=∠PCE,
    ∴∠PEC=∠PCE,
    ∴PE=PC;故②正确;
    连接EF,
    ∵∠EPF=∠FCE=90°,
    ∴点E,P,F,C四点共圆,
    ∴∠FEC=∠FPC=45°,
    ∴EC=FC,
    ∴BF=DE=1,
    故③正确;
    取AE 的中点O,连接PO,CO,
    ∴AO=PO=AE,
    ∵∠APE=90°,
    ∴点P在以O为圆心,AE为直径的圆上,
    ∴当O、C、P共线时,CP的值最小,
    ∵PC≥OC﹣OP,
    ∴PC的最小值=OC﹣OP=OC﹣AE,
    ∵OC==,AE==,
    ∴PC的最小值为﹣,故④错误,
    故选:C.
    此题考查了正方形的性质、全等三角形的判定和性质、直角三角形的性质、圆的综合等知识,借助圆的性质解决线段的最小值是解答的关键.
    3、A
    【解析】
    先把原数据按由小到大排列,然后根据众数、中位数的定义求解.
    【详解】
    数据从小到大排列为:44,45,45,51,52,54,
    所以这组数据的众数为45,中位数为×(45+51)=48,
    故选A.
    本题考查了众数与中位数,熟练掌握众数与中位数的概念以及求解方法是解题的关键.一组数据中出现次数最多的数据叫做众数.一组数据按从小到大的顺序排列,位于最中间的数(或中间两个数的平均数)叫做这组数据的中位数.
    4、A
    【解析】
    利用多项式乘多项式法则计算,根据结果不含x的一次项求出m的值即可.
    【详解】
    解:原式=x2+(m-5)x-5m,
    由结果中不含x的一次项,得到m-5=0,
    解得:m=5,
    故选:A
    此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.
    5、B
    【解析】
    根据即可求解.
    【详解】
    解:,
    故选:B.
    本题考查了二次根式的化简与求值,正确掌握二次根式的性质是解题关键.
    6、A
    【解析】
    根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.
    【详解】
    由题意可得:MN是AC的垂直平分线,
    则AD=DC,故∠C=∠DAC,
    ∵∠C=30°,
    ∴∠DAC=30°,
    ∵∠B=55°,
    ∴∠BAC=95°,
    ∴∠BAD=∠BAC-∠CAD=65°,
    故选A.
    此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.
    7、B
    【解析】
    分析:根据多边形的外角和为360°即可得出答案.
    详解:360°÷60°=6,即六边形,故选B.
    点睛:本题主要考查的是正多边形的外角和定理,属于基础题型.多边形的内角和定理为(n-2)×180°,多边形的外角和为360°.
    8、D
    【解析】
    设30°角所对的直角边为a,根据30°角所对的直角边等于斜边的一半求出斜边的长度,再利用勾股定理求出另一条边的长度,然后即可求出比值.
    解:如图所示,
    设30°角所对的直角边BC=a,
    则AB=1BC=1a,
    ∴AC=,
    ∴三边之比为a:a:1a=1::1.
    故选D.
    “点睛”本题主要考查了含30度角的直角三角形的边的关系,勾股定理,是基础题,作出草图求解更形象直观.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、乙
    【解析】
    从折线图中得出甲乙的射击成绩,再利用方差的公式计算.
    【详解】
    解:由图中知,甲的成绩为8,9,7,8,10,7,9,10,7,10,
    乙的成绩为7,7,8,9,8,9,10,9,9,9,
    =(8+9+7+8+10+7+9+10+7+10)÷10=8.5,
    =(7+7+8+9+8+9+10+9+9+9)÷10=8.5,
    甲的方差S甲2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.35
    乙的方差S乙2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85,
    ∴S2乙<S2甲.
    故答案为:乙.
    本题考查了方差的定义与意义,熟记方差的计算公式是解题的关键,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    10、4或1
    【解析】
    分别利用,当MN∥BC时,以及当∠ANM=∠B时,分别得出相似三角形,再利用相似三角形的性质得出答案.
    【详解】
    如图1,当MN∥BC时,
    则△AMN∽△ABC,
    故,
    则,
    解得:MN=4,
    如图2所示:当∠ANM=∠B时,
    又∵∠A=∠A,
    ∴△ANM∽△ABC,
    ∴,
    即,
    解得:MN=1,
    故答案为:4或1.
    此题主要考查了相似三角形判定,正确利用分类讨论得出是解题关键.
    11、1, 2.
    【解析】
    (1)设捐款5元,10元,15元,20元,30元的人数分别为3x人,4x人,5x人,8x人,2x人.构建方程即可解决问题.
    (2)根据捐款人数以及捐款金额,求出总金额即可.
    【详解】
    解:(1)设捐款5元,10元,15元,20元,30元的人数分别为3x人,4x人,5x人,8x人,2x人.
    由题意:5x+8x=26,
    解得x=2,
    ∴一共有:6+8+10+16+4=1人,
    故答案为1.
    (2)总共捐款额=6×5+8×10+10×15+16×20+4×30=2(元).
    故答案为:2.
    本题考查频数分布直方图,抽样调查等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    12、1.
    【解析】
    如图:由四边形ABCD是平行四边形,可得AB=CD,BC=AD,OA=OC,OB=OD;又由△OAB的周长比△OBC的周长大3,可得AB﹣BC=3,又因为▱ABCD的周长是30,所以AB+BC=10;解方程组即可求得.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AB=CD,BC=AD,OA=OC,OB=OD;
    又∵△OAB的周长比△OBC的周长大3,
    ∴AB+OA+OB﹣(BC+OB+OC)=3
    ∴AB﹣BC=3,
    又∵▱ABCD的周长是30,
    ∴AB+BC=15,
    ∴AB=1.
    故答案为1.
    13、1.
    【解析】
    只有非负数才有平方根,可知两个被开方数都是非负数,即可求得x的值,进而得到y,从而求解.
    【详解】
    解:由题意得
    解得:x=1,
    把x=1代入已知等式得:y=0,
    所以,x+y=1.
    函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数为非负数.
    三、解答题(本大题共5个小题,共48分)
    14、 (1);(2)证明见解析.
    【解析】
    (1)根据正方形的性质可得∠BCG=∠DCB=∠DCF=90°,BC=DC,再根据同角的余角相等求出∠CBG=∠CDF,然后利用“角边角”证明△CBG和△CDF全等,根据全等三角形对应边相等可得BG=DF,再利用勾股定理列式计算即可得解;
    (2)过点过点C作CM⊥CE交BE于点M,根据全等三角形对应边相等可得CG=CF,全等三角形对应角相等可得∠F=∠CGB,再利用同角的余角相等求出∠MCG=∠ECF,然后利用“角边角”证明△MCG和△ECF全等,根据全等三角形对应边相等可得MG=EF,CM=CE,从而判断出△CME是等腰直角三角形,再根据等腰直角三角形的性质证明即可.
    【详解】
    (1)解:∵四边形ABCD是正方形,
    ∴∠BCG=∠DCB=∠DCF=90°,BC=DC,
    ∵BE⊥DF,
    ∴∠CBG+∠F=∠CDF+∠F,
    ∴∠CBG=∠CDF,
    在△CBG和△CDF中,

    ∴△CBG≌△CDF(ASA),
    ∴BG=DF=4,
    ∴在Rt△BCG中,CG2+BC2=BG2,
    ∴CG==;
    (2)证明:如图,过点C作CM⊥CE交BE于点M,
    ∵△CBG≌△CDF,
    ∴CG=CF,∠F=∠CGB,
    ∵∠MCG+∠DCE=∠ECF+∠DCE=90°,
    ∴∠MCG=∠ECF,
    在△MCG和△ECF中,

    ∴△MCG≌△ECF(SAS),
    ∴MG=EF,CM=CE,
    ∴△CME是等腰直角三角形,
    ∴ME=CE,
    又∵ME=MG+EG=EF+EG,
    ∴EF+EG=CE.
    本题考查了正方形的性质;全等三角形的判定与性质;勾股定理;等腰直角三角形,熟练掌握性质定理是解题的关键.
    15、(1);(2)5种;(3)装运种脐橙车,种脐橙车,种脐橙车时,获利最大,最大利润为元.
    【解析】
    (1)利用“车辆数之和=20”这个等量关系进行列式即可;
    (2)关系式为:装运每种脐橙的车辆数≥4;
    (3)总利润为:装运A种脐橙的车辆数×6×1200+装运B种脐橙的车辆数×5×1600+装运C种脐橙的车辆数×4×1000,然后按x的取值来判定.
    【详解】
    解:(1)根据题意,装运种脐橙的车辆数为,装运种脐橙的车辆数为,那么装运种脐橙的车辆数为,
    则有:,即:
    (2)由知,装运三种脐橙的车辆数分别为
    由题意得:
    解得,
    因为为整数,
    所以的值为,所以安排方案共有种.
    (3)
    的值随的增大而减小
    要使利润最大,则,
    故选方案为:装运种脐橙车,种脐橙车,种脐橙车.
    (元)
    答:当装运种脐橙车,种脐橙车,种脐橙车时,获利最大,最大利润为元.
    故答案为:(1);(2)5种;(3)装运种脐橙车,种脐橙车,种脐橙车时,获利最大,最大利润为元.
    解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系.确定x的范围,得到装在的几种方案是解决本题的关键.
    16、 (1)点到轴的距离等于点到轴距离; (2);(1)1 ,1
    【解析】
    (1)根据横坐标为点到y轴的距离;纵坐标为点到x轴的距离即可比较大小;
    (2)由点A1和点B重合时,需将△ABC向右移2个单位,向下移2个单位,据此求解可得;
    (1)根据点A的纵坐标得出向下平移的距离,由点B的横坐标得出向左平移的距离.
    【详解】
    解:(1)∵,
    ∴点到轴的距离为1
    ∵,点到轴距离为1
    ∴点到轴的距离等于点到轴距离
    (2)点和点重合时,需将向右移2个单位,向下移2个单位,
    ∴点的对应点的坐标是
    (1)平移△ABO至△A2B2O2,需要至少向下平移超过1单位,并且至少向左平移1个单位,才能△A2B2O2使位于第三象限.
    故答案为:1,1.
    本题主要考查点的意义与图形的变换-平移,注意:点到x轴的距离等于该点纵坐标的绝对值;点到y轴的距离等于该点横坐标的绝对值;平面直角坐标系中点的坐标的平移规律.
    17、(1)b=3,m=1;(2)或
    【解析】
    (1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;
    (2)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.
    【详解】
    解:(1)∵点P(1,b)在直线l1:y=2x+1上,
    ∴b=2×1+1=3;
    ∵点P(1,3)在直线l2:y=mx+4上,
    ∴3=m+4,
    ∴m=.
    (2)当x=a时,yC=2a+1, yD=4a.
    ∵CD=2,
    ∴|2a+1(4a)|=2,
    解得:a=或a=.
    ∴a的值为或.
    本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及解含绝对值符号的一元一次方程,解题的关键是:(1)利用一次函数图象上点的坐标特征求出b、m的值;(2)根据CD=2,找出关于a的含绝对值符号的一元一次方程.
    18、(1)y甲、y乙与x的函数关系式分别为:y甲=700x+2000,y乙=800x+1600;(2)当学生人数超过4人时,选择甲旅行社更省钱,当学生人数少于4人时,选择乙旅行社更省钱,学生人数等于4人时,选择甲、乙旅行社相等.
    【解析】
    (1)根据甲旅行社的收费=两名家长的全额费用+学生的七折费用,可得到y1与x的函数关系式;再根据乙旅行社的收费=两名家长的八折费用+学生的八折费用,可得到y2与x的函数关系式;
    (2)根据题意知:y甲<y乙时,可以确定学生人数,选择甲旅行社更省钱.
    【详解】
    试题解析:(1)由题意得:=2000+1000×0.7x=700x+2000,=2000×0.8+1000×0.8x =800x+1600;
    (2)当<时,即:700x+2000<800x+1600
    解得:x>4 ,
    当>时,即:700x+2000>800x+1600
    解得:x<4 ,
    当=时,即:700x+2000=800x+1600
    解得:x=4 ,
    答:当学生人数超过4人时,选择甲旅行社更省钱,当学生人数少于4人时,选择乙旅行社更省钱,学生人数等于4人时,选择甲、乙旅行社一样.
    考点: 一次函数的应用.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、()1.
    【解析】
    首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.
    【详解】
    ∵四边形ABCD为正方形,
    ∴AB=BC=1,∠B=90°,
    ∴AC2=12+12,AC=;
    同理可求:AE=()2,HE=()3…,
    ∴第n个正方形的边长an=()n-1,
    ∴第2016个正方形的边长为()1,
    故答案为()1.
    本题考查了勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到an的规律是解题的关键.
    20、9
    【解析】
    用总频数减去各组已知频数可得.
    【详解】
    第三组频数是40-10-8-7-6=9
    故答案为:9
    考核知识点:频数.理解频数的定义是关键.数据的个数叫频数.
    21、
    【解析】
    根据=,=,找出规律从而得解.
    【详解】
    解:
    ∵直线,当x=0时,y=1,当y=0时,x=﹣1,
    ∴OA1=1,OD=1,
    ∴∠ODA1=45°,
    ∴∠A2A1B1=45°,
    ∴A2B1=A1B1=1,
    ∴=,
    ∵A2B1=A1B1=1,
    ∴A2C1=2=,
    ∴=,
    同理得:A3C2=4=,…,=,
    ∴=,
    故答案为.
    22、矩形的对角线相等
    【解析】
    根据逆命题的定义:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题,原命题的条件是对角线相等,结论是矩形,互换即可得解.
    【详解】
    原命题的条件是:对角线相等的四边形,结论是:矩形;
    则逆命题为矩形的对角线相等.
    此题主要考查对逆命题的理解,熟练掌握,即可解题.
    23、1.
    【解析】
    根据代表的是平均数,利用平均数的公式即可得出答案.
    【详解】
    由题意,可得.
    故答案为:1.
    本题主要考查平均数,掌握平均数的公式是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)y=x+1;(2);(2)(2,4)或(﹣2,2)或
    【解析】
    (1)利用待定系数法即可解决问题;
    (2)求出点C坐标,利用待定系数法求出直线DE的解析式即可解决问题;
    (2)求出点E坐标,分两种情形分别讨论求解即可;
    【详解】
    (1)∵A(﹣2,0),OA=2OB,
    ∴OA=2,OB=1,
    ∴B(0,1),
    设直线AB的解析式为y=kx+b,则有
    解得
    ∴直线AB的解析式为y=x+1.
    (2)∵BC=AB,A(﹣2,0),B(0,1),
    ∴C(2,2),
    设直线DE的解析式为y=k′x+b′,则有
    解得
    ∴直线DE的解析式为
    令y=0,得到

    (2)如图1中,作CF⊥OD于F.
    ∵CE:CD=1:2,CF∥OE,

    ∵CF=2,
    ∴OE=2.
    ∴m=2.
    ∴E(0,2),D(6,0),
    ①当EC为菱形ECFG的边时,F(4,2),G(2,4)或F′(0,1),G′(﹣2,2).
    ②当EC为菱形EF″CG″的对角线时,F″G″垂直平分线段EC,易知直线DE的解析式为,直线G″F″的解析式为
    由,解得
    ∴F″,
    设G″(a,b),则有

    ∴G″
    本题考查一次函数综合题、平行线分线段成比例定理、菱形的判定和性质、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.
    25、(1)共抽测了240名学生 (2)样本是240名学生的视力情况
    (3)
    【解析】
    解:(1)共抽测了学生人数:20+40+90+60+30=240(名)
    (2)易知题意为调查某市3万学生是哩情况所抽取学生视力情况样本,故样本是240名学生的视力情况
    (3)依题意知,视力在4.9-5.1(含4.9和5.1)均属正常,可从直方图判断一共有(60+30)人合格.故3万学生合格人数为:
    (名)
    考点:抽样调查
    点评:本题难度较低,主要考查学生对抽样调查及直方统计图知识点的掌握,正确读懂统计图数据位解题关键.
    26、
    【解析】
    连接DB于AC相交于M,根据已知和菱形的性质可分别求得AC,AE,AG的长,从而可发现规律根据规律不难求得第2015个菱形的边长.
    【详解】
    :连接DB,如图所示:
    ∵四边形ABCD是菱形,
    ∴AD=AB.AC⊥DB,
    ∵∠DAB=60°,
    ∴△ADB是等边三角形,
    ∴DB=AD=1,
    ∴BM=,
    ∴AM=,
    ∴AC=,
    同理可得AE=AC=()2,AG=AE=3=()3,
    按此规律所作的第n个菱形的边长为,
    则所作的第2019个菱形的边长为.
    故答案为:.
    此题主要考查菱形的性质、等边三角形的判定和性质以及学生探索规律的能力,解决本题的关键是发现规律.
    题号





    总分
    得分
    批阅人
    脐橙品种
    每辆汽车运载量(吨)
    每吨脐橙获得(元)

    相关试卷

    2024年湖南省雨花区九上数学开学经典模拟试题【含答案】:

    这是一份2024年湖南省雨花区九上数学开学经典模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖南省益阳市数学九上开学调研试题【含答案】:

    这是一份2024年湖南省益阳市数学九上开学调研试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖南省衡阳市名校数学九上开学经典模拟试题【含答案】:

    这是一份2024年湖南省衡阳市名校数学九上开学经典模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map