2024年湖北省武汉市洪山高级中学数学九上开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,∠1、∠2、∠3、∠4、∠5是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是( )
A.110° B.108° C.105° D.100°
2、(4分)如图,在中,,、是斜边上两点,且,将绕顺时针旋转后,得到,连接,则下列结论不正确的是( )
A.B.为等腰直角三角形
C.平分D.
3、(4分)2022年将在北京-张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差:
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )
A.队员1B.队员2C.队员3D.队员4
4、(4分)反比例函数经过点(1,),则的值为( )
A.3B.C.D.
5、(4分)如图,在四边形中, , 交于 , 平分 ,,下面结论:① ;②是等边三角形;③;④,其中正确的有
A.1个B.2个C.3个D.4个
6、(4分)如图,在正方形ABCD中,E为AB中点,连结DE,过点D作交BC的延长线于点F,连结若,则EF的值为
A.3B.C.D.4
7、(4分)下列平面图形中,是中心对称图形的是( )
A.B.C.D.
8、(4分)化简的结果是
A.+1B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若关于的一元二次方程的常数项为,则的值是__________.
10、(4分)如图,直线y=kx+b与直线y=2x交于点P(1,m),则不等式2x
12、(4分)一个装有进水管出水管的容器,从某时刻起只打开进水管进水,经过一段时间,在打开出水管放水,至15分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(升)与时间x(分钟)之间的关系如图所示,关停进水管后,经过_____________分钟,容器中的水恰好放完.
13、(4分)如图,在△ABC中,BC边的垂直平分线交BC于D,交AB于E,若CE平分∠ACB,∠B=40°则∠A= 度.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图所示,在△ABC中,CD⊥AB于D,AC=4,BC=3,CD=(1)求AD的长;(2)求证:△ABC是直角三角形.
15、(8分)已知弹簧在一定限度内,它的长度y(厘米)与所挂重物质量x(千克)是一次函数关系.
下表中记录的是两次挂不同重量重物的质量(在弹性限度内)与相对应的弹簧长度:
求不挂重物时弹簧的长度.
16、(8分)为积极响应“弘扬传统文化”的号召,万州区某中学举行了一次中学生诗词大赛活动.小何同学对他所在八年级一班参加诗词大赛活动同学的成绩进行了整理,成绩分别100分、90分、80分、70分,并绘制出如下的统计图.
请根据以上提供的信息,解答下列问题:
(1)该校八年级(1)班参加诗词大赛成绩的众数为______分;并补全条形统计图.
(2)求该校八年级(1)班参加诗词大赛同学成绩的平均数;
(3)结合平时成绩、期中成绩和班级预选成绩(如下表),年级拟从该班小何和小王的两位同学中选一名学生参加区级决赛,按的比例计算两位同学的最终得分,请你根据计算结果确定选谁参加区级决赛.
17、(10分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.
(1)求证:△BDC≌△EFC;
(2)若EF∥CD,求证:∠BDC=90°.
18、(10分)如图,在四边形ABCD中,AB∥DC,边AD与BC不平行
(1)若∠A=∠B,求证:AD=BC.
(2)已知AD=BC,∠A=70°,求∠B的度数.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1小时后,它们相距______________海里.
20、(4分)如图,在△ABC中,AB=5,BC=7,EF是△ABC的中位线,则EF的长度范围是________.
21、(4分)如图已知四边形ABCD中,AB=CD,AB//CD要使四边形ABCD是菱形,应添加的条件是_____________________________(只填写一个条件,不使用图形以外的字母).
22、(4分)若五个整数由小到大排列后,中位数为4,唯一的众数为2,则这组数据之和的最小值是_____.
23、(4分)已知,则 ___________ .
二、解答题(本大题共3个小题,共30分)
24、(8分)先化简,再求值:,其中
25、(10分)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:
(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;
(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;
(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.
26、(12分)已知:梯形中,,联结(如图1). 点沿梯形的边从点移动,设点移动的距离为,.
(1)求证:;
(2)当点从点移动到点时,与的函数关系(如图2)中的折线所示. 试求的长;
(3)在(2)的情况下,点从点移动的过程中,是否可能为等腰三角形?若能,请求出所有能使为等腰三角形的的取值;若不能,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
∠AED的外角为:360°-∠1-∠2-∠3-∠4=80°,多边形外角与相邻的内角互为邻补角,所以∠AED =180°-80°=100°.
2、B
【解析】
由已知和旋转的性质可判断A项,进一步可判断C项;利用SAS可证明△AED≌△AEF,可得ED=EF,容易证明△FBE是直角三角形,由此可判断D项和B项,于是可得答案.
【详解】
解:∵△ADC绕点A顺时针旋转90°得△AFB,
∴△ADC≌△AFB,∠FAD=90°,AD=AF,
∵∠DAE=45°,
∴∠FAE=90°-∠DAE=45°,所以A正确;
∴∠DAE=∠FAE,
∴平分,所以C正确;
∵
∴△AED≌△AEF(SAS),
∴ED=EF,
在Rt△ABC中,∠ABC+∠C=90°,
又∵∠C=∠ABF,
∴∠ABC+∠ABF=90°,即∠FBE=90°,
∴在Rt△FBE中,由勾股定理得:,
∴,所以D正确;
而BE、CD不一定相等,所以BE、BF不一定相等,所以B不正确.
故选B.
本题考查了等腰直角三角形的性质、旋转的性质、勾股定理以及全等三角形的判定和性质,解题时注意旋转前后的对应关系.
3、B
【解析】
据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
因为队员1和2的方差最小,但队员2平均数最小,所以成绩好,所以队员2成绩好又发挥稳定.
故选B.
考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
4、B
【解析】
此题只需将点的坐标代入反比例函数解析式即可确定k的值.
【详解】
把已知点的坐标代入解析式可得,k=1×(-1)=-1.
故选:B.
本题主要考查了用待定系数法求反比例函数的解析式,.
5、C
【解析】
由两组对边平行证明四边形AECD是平行四边形,由AD=DC得出四边形AECD是菱形,得出AE=EC=CD=AD,则∠EAC=∠ECA,由角平分线定义得出∠EAB=∠EAC,则∠EAB=∠EAC=∠ECA,证出∠EAB=∠EAC=∠ECA=30°,则BE=AE,AC=2AB,①正确;由AO=CO得出AB=AO,由∠EAB=∠EAC=30°得出∠BAO=60°,则△ABO是等边三角形,②正确;由菱形的性质得出S△ADC=S△AEC=AB•CE,S△ABE=AB•BE,由BE=AE=CE,则S△ADC=2S△ABE,③错误;由DC=AE,BE=AE,则DC=2BE,④正确;即可得出结果.
【详解】
解:∵AD∥BC,AE∥CD,
∴四边形AECD是平行四边形,
∵AD=DC,
∴四边形AECD是菱形,
∴AE=EC=CD=AD,
∴∠EAC=∠ECA,
∵AE平分∠BAC,
∴∠EAB=∠EAC,
∴∠EAB=∠EAC=∠ECA,
∵∠ABC=90°,
∴∠EAB=∠EAC=∠ECA=30°,
∴BE=AE,AC=2AB,①正确;
∵AO=CO,
∴AB=AO,
∵∠EAB=∠EAC=30°,
∴∠BAO=60°,
∴△ABO是等边三角形,②正确;
∵四边形AECD是菱形,
∴S△ADC=S△AEC=AB•CE,
S△ABE=AB•BE,
∵BE=AE=CE,
∴S△ADC=2S△ABE,③错误;
∵DC=AE,BE=AE,
∴DC=2BE,④正确;
故选:C.
本题考查平行四边形的判定、菱形的判定与性质、角平分线定义、等边三角形的判定、含30°角直角三角形的性质、三角形面积的计算等知识,熟练掌握菱形的性质与含30°角直角三角形的性质是解题关键.
6、B
【解析】
根据题意可得AB=2,∠ADE=∠CDF,可证△ADE≌△DCF,可得CF=1,根据勾股定理可得EF的长.
【详解】
∵ABCD是正方形
∴AB=BC=CD,∠A=∠B=∠DCB=∠ADC=90°
∵DF⊥DE
∴∠EDC+∠CDF=90°且∠ADE+∠EDC=90°
∴∠ADE=∠CDF且AD=CD,∠A=∠DCF=90°
∴△ADE≌△CDF
∴AE=CF=1
∵E是AB中点
∴AB=BC=2
∴BF=3
在Rt△BEF中,EF=.
故选B.
本题考查了正方形的性质,全等三角形的判定,勾股定理,关键熟练运用这些性质解决问题.
7、B
【解析】
根据中心对称图形的概念求解.
【详解】
解:A、不是中心对称图形,故此选项错误;
B、是中心对称图形,故此选项正确;
C、不是中心对称图形,故此选项错误;
D、不是中心对称图形,故此选项错误.
故选B.
本题考查中心对称图形.
8、D
【解析】
试题分析:.故选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
先找到一元二次方程的常数项,得到关于m的方程,解出方程之后检验最后得到答案即可
【详解】
关于的一元二次方程的常数项为,故有,解得m=4或m=-1,又因为原方程是关于x的一元二次方程,故m+1≠0,m≠1
综上,m=4,故填4
本题考查一元二次方程的概念,解出m之后要重点注意二次项系数不能为0,舍去一个m的值
10、x<1
【解析】
根据两直线的交点坐标和函数的图象即可求出答案.
【详解】
∵直线y1=kx+b与直线y2=2x交于点P(1,m),
∴不等式2x<kx+b的解集是x<1,
故答案是:x<1.
考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
11、1
【解析】
证明CF∥DB,CF=DB,可得四边形CDBF是平行四边形,作EM⊥DB于点M,解直角三角形即可.
【详解】
解:∵CF∥AB,
∴∠ECF=∠EBD.
∵E是BC中点,
∴CE=BE.
∵∠CEF=∠BED,
∴△CEF≌△BED(ASA).
∴CF=BD.
∴四边形CDBF是平行四边形.
作EM⊥DB于点M,
∵四边形CDBF是平行四边形,,
∴BE=,DF=2DE,
在Rt△EMB中,EM2+BM2=BE2且EM=BM
∴EM=1,
在Rt△EMD中,
∵∠EDM=30°,
∴DE=2EM=2,
∴DF=2DE=1.
故答案为:1.
本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,
12、13.5
【解析】
从图形中可得前6分钟只进水,此时可计算出进水管的速度,从第6分到第15分既进水又出水,且进水速度大于出水速度, 根据此时进水的速度=进水管的速度-出水管的速度即可计算出出水管的出水速度,即可解答
【详解】
从图形可以看出
进水管的速度为:60÷6=10(升/分),
出水管的速度为:10-(90-60)÷(15-6)= (升/分),
关闭进水管后,放水经过的时间为:90÷=13.5(分).
此题考查一次函数的应用,函数图象,解题关键在于看懂图象中的数据
13、60
【解析】
试题分析:根据线段垂直平分线得出BE=CE,推出∠B=∠BCE=40°,求出∠ACB=2∠BCE=80°,代入∠A=180°-∠B-∠ACB=60°.
考点:线段垂直平分线的性质
三、解答题(本大题共5个小题,共48分)
14、(1),(2)见解析.
【解析】
(1)依据∠ADC=90°,利用勾股定理可得AD=;
(2)依据勾股定理的逆定理,可得BC2+AC2=AB2,即可得到△ABC是直角三角形.
【详解】
解:(1)∵CD⊥AB,
∴∠ADC=90°,
∴AD==;
(2)证明:由上题知AD=,
同理可得BD=,
∴AB=AD+BD=5,
∵32+42=52,
∴BC2+AC2=AB2,
∴△ABC是直角三角形.
本题考查了勾股定理,勾股定理逆定理,根据图形判断出所求的边所在的直角三角形是解题的关键.
15、不挂重物时弹簧的长度为1厘米
【解析】
弹簧总长y=挂上xkg的重物时弹簧伸长的长度+弹簧原来的长度,把相关数值代入即可.
【详解】
设长度y(厘米)与所挂重物质量x(千克)的一次函数关系式是:y=kx+b(k≠0)
将表格中数据分别代入为: ,
解得: ,
∴y=x+1,当x=0时,y=1.
答:不挂重物时弹簧的长度为1厘米
此题考查一次函数的应用,解题关键在于列出方程
16、90,见解析;(2)86;(3)选小何参加区级决赛.
【解析】
(1)根据条形图、扇形统计图中的数据可得出众数为90分,同时知道80分的人数为6人,即可补全条形图;(2)根据求平均数的方法计算平均数即可;(3)用加权平均数计算公式计算然后做比较即可.
【详解】
(1)90
全条形统计图80分6人.
(2).
(3)小何得分:(分)
小王得分:(分)
∴选小何参加区级决赛.
本题考查了条形图、扇形统计图的制作特点、平均数、加权平均数的意义和求法,掌握平均数、加权平均数的计算方法是解答的关键.
17、(1)详见解析;(2)详见解析.
【解析】
(1)根据旋转的性质可得CD=CF,∠DCF=90°,然后根据同角的余角相等求出∠BCD=∠ECF,再利用“边角边”证明即可;
(2)根据两直线平行,同旁内角互补求出∠F=90°,再根据全等三角形对应角相等可得∠BDC=∠F.
【详解】
(1)由旋转的性质得,CD=CF,∠DCF=90°,
∴∠DCE+∠ECF=90°,
∵∠ACB=90°,
∴∠BCD+∠DCE=90°,
∴∠BCD=∠ECF,
在△BDC和△EFC中,
,
∴△BDC≌△EFC(SAS);
(2)∵EF∥CD,
∴∠F+∠DCF=180°,
∵∠DCF=90°,
∴∠F=90°,
∵△BDC≌△EFC,
∴∠BDC=∠F=90°.
本题考查了旋转的性质,全等三角形的判定与性质,平行线的性质,旋转前后对应边相等,此类题目难点在于利用同角的余角相等求出相等的角.
18、 (1)证明见解析;(2)∠B=70°.
【解析】
(1)过C作CE∥AD于点E,可证明四边形ADCE是平行四边形,根据平行四边形的性质可得AD=CE,根据AD∥CE,可得∠A=∠CEB,根据等量代换可得∠CEB=∠B,进而得到CE=BC,从而可得AD=BC;
(2)过C作CE∥AD,可证明四边形ADCE是平行四边形,根据平行四边形的性质可得AD=CE,再由条件AD=BC可得CE=BC,根据等边对等角可得∠B=∠CEB,再根据平行线的性质可得∠A=∠CEB,利用等量代换可得∠B=∠A.
【详解】
(1) 证明:过C作CE∥AD于点E,
∵AB∥DC,CE∥AD
∴四边形ADCE是平行四边形,
∴AD=CE,
∵AD∥CE,
∴∠A=∠CEB,
∵∠A=∠B,
∴∠CEB=∠B,
∴CE=CB,
∴AD=CB;
(2)过C作CE∥AD于点E,
∵AB∥DC,CE∥AD
∴四边形ADCE是平行四边形,
∴AD=CE,
∵AD=BC,
∴CE=CB,
∴∠B=∠CEB,
∵AD∥CE,
∴∠A=∠CEB,
∴∠B=∠A=70°.
本题主要考查平行四边形的判定及性质,等腰三角形的性质,掌握平行四边形的性质是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、20
【解析】
根据题意画出图形,根据题目中AB、AC的夹角可知它为直角三角形,然后根据勾股定理解答.
【详解】
如图,
∵由图可知AC=16×1=16(海里),
AB=12×1=12(海里),
在Rt△ABC中,BC==20(海里).
故它们相距20海里.
故答案为:20
本题考查的是勾股定理,正确的掌握方位角的概念,从题意中得出△ABC为直角三角形是关键.
20、1<EF<6
【解析】
∵在△ABC中,AB=5,BC=7,
∴7-5<AC<7+5,
即2<AC<12.
又∵EF是△ABC的中位线,
∴EF=AC
∴1<EF<6.
21、ACBD,或AB=AD(答案不唯一)
【解析】
【分析】首先根据AB∥CD,AB=CD可得四边形ABCD是平行四边形,再根据一组邻边相等的平行四边形是菱形可得添加条件AD=AB.也可以根据对角线互相垂直的平行四边形是菱形添加条件ACBD.
【详解】可添加的条件为AD=AB,
∵AB∥CD,AB=CD,
∴四边形ABCD是平行四边形,
∵AD=AB,
∴四边形ABCD为菱形,
故答案为:AB=AD(答案不唯一).
【点睛】本题考查了菱形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).
22、19
【解析】
根据“五个整数由小到大排列后,中位数为4,唯一的众数为2”,可知此组数据的第三个数是4,第一个和第二个数是2,据此可知当第四个数是5,第五个数是6时和最小.
【详解】
∵中位数为4
∴中间的数为4,
又∵众数是2
∴前两个数是2,
∵众数2是唯一的,
∴第四个和第五个数不能相同,为5和6,
∴当这5个整数分别是2,2,4,5,6时,和最小,最小是2+2+4+5+6=19,故答案为19.
本题考查中位数和众数,能根据中位数和众数的意义进行逆向推理是解决本题的关键.在读题时需注意“唯一”的众数为2,所以除了两个2之外其它的数只能为1个.
23、
【解析】
将二次根式化简代值即可.
【详解】
解:
所以原式.
故答案为:
本题考查了二次根式的运算,将二次根式转化为和已知条件相关的式子是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、,
【解析】
根据分式的混合运算法则把原式化简,把x的值代入计算即可
【详解】
解:原式
当时,
原式
本题考查整式的混合运算-化简求值,解题的关键是明确整式的混合运算的计算方法.
25、(1)y=200x+74000(10≤x≤30)
(2)有三种分配方案,
方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;
方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;
方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;
(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.
【解析】
(1)根据题意和表格中的数据可以得到y关于x的函数关系式;
(2)根据题意可以得到相应的不等式,从而可以解答本题;
(3)根据(1)中的函数解析式和一次函数的性质可以解答本题.
【详解】
解:(1)设派往A地区x台乙型联合收割机,则派往B地区x台乙型联合收割机为(30﹣x)台,派往A、B地区的甲型联合收割机分别为(30﹣x)台和(x﹣10)台,
∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30);
(2)由题意可得,
200x+74000≥79600,得x≥28,
∴28≤x≤30,x为整数,
∴x=28、29、30,
∴有三种分配方案,
方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;
方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;
方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;
(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高,
理由:∵y=200x+74000中y随x的增大而增大,
∴当x=30时,y取得最大值,此时y=80000,
∴派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.
本题考查一次函数的性质,解题关键是明确题意,找出所求问题需要的条件,利用一次函数和不等式的性质解答.
26、(1)证明见解析;(2);(3),,,,或
【解析】
(1)由平行线的性质、直角三角形的性质、等腰三角形的性质得出∠ABD=∠CDB,∠A+∠ADC=180°,∠ABD+∠CBD=90°,∠ABD=∠ADB,得出∠A+2∠ABD=180°,2∠ABD+2∠CBD=180°,即可得出结论;
(2)作DE⊥AB于E,则DE=BC=3,CD=BE,由勾股定理求出AE==4,得出CD=BE=AB-AE=1;
(3)分情况讨论:①点P在AB边上时;②点P在BC上时;③点P在AD上时;由等腰三角形的性质和勾股定理即可得出答案.
【详解】
(1)证明:∵,
∴,
又∵,
∴
∵,
∴,即
∴
(2)解:由点,得,
由点点的横坐标是8,得时,∴
作于,∵,∴,
∵,∴
(3)
情况一:点在边上,作,
当时,是等腰三角形,此时,,
∴
情况二:点在边上,当时是等腰三角形,
此时,,,
∴在中,,
即,
∴
情况三:点在边上时,不可能为等腰三角形
情况四:点在边上,有三种情况
1°作,当时,为等腰三角形,
此时,∵,
∴,
又∵,
∴
∴,
∴,
∴,
∴
∴
2°当时为等腰三角形,
此时,
3°当点与点重合时为等腰三角形,
此时或.
本题是四边形综合题目,考查了梯形的性质、平行线的性质、等腰三角形的性质与判定、直角三角形的性质、勾股定理等知识;本题综合性强,有一定难度.
题号
一
二
三
四
五
总分
得分
批阅人
队员1
队员2
队员3
队员4
平均数(秒)
51
50
51
50
方差(秒2)
3.5
3.5
14.5
15.5
所挂重物质量x(千克)
2.5
5
弹簧长度y(厘米)
7.5
9
学生姓名
平时成绩
期中成绩
预选成绩
小何
80
90
100
小王
90
100
90
每台甲型收割机的租金
每台乙型收割机的租金
A地区
1800
1600
B地区
1600
1200
2024年湖北省宜昌市宜昌中学数学九上开学统考模拟试题【含答案】: 这是一份2024年湖北省宜昌市宜昌中学数学九上开学统考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖北省武汉市武汉七一中学数学九上开学监测模拟试题【含答案】: 这是一份2024年湖北省武汉市武汉七一中学数学九上开学监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖北省武汉市六中学数学九上开学经典试题【含答案】: 这是一份2024年湖北省武汉市六中学数学九上开学经典试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。