2024年湖北省黄石市黄石港区第十四中学九上数学开学调研试题【含答案】
展开
这是一份2024年湖北省黄石市黄石港区第十四中学九上数学开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,正方形中,,连接交对角线于点,那么( )
A.B.C.D.
2、(4分)若x2+mxy+y2是一个完全平方式,则m=( )
A.2 B.1 C.±1 D.±2
3、(4分)计算的结果等于( )
A.B.C.D.
4、(4分)代数式有意义的取值范围是( )
A.B.C.D.
5、(4分)下列命题是真命题的是( )
A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形
C.对角线互相垂直且相等的四边形是正方形D.对角线互相垂直的四边形是菱形
6、(4分)下列关于直线的说法正确的是( )
A.经过第一、二、四象限B.与轴交于点
C.随的增大而减小D.与轴交于点
7、(4分)如图,△ABC和△DCE都是等边三角形,点B、C、E在同一条直线上,BC=1,CE=2,连接BD,则BD的长为( )
A.3B.2C.2D.
8、(4分)如图,矩形ABCD中,O是对角线AC的中点,OE⊥AC,交AD于点E,连接CE.若AB=2,BC=4,则CE的长为( )
A.2.5B.2.8C.3D.3.5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如果点A(1,n)在一次函数y=3x﹣2的图象上,那么n=_____.
10、(4分)已知直线y=kx+b和直线y=-3x平行,且过点(0,-3),则此直线与x轴的交点坐标为________.
11、(4分)分解因式:a3﹣2a2+a=________.
12、(4分)若关于x的方程无解,则m= .
13、(4分)如图是一辆慢车与一辆快车沿相同路线从地到地所行的路程与时间之间的函数图象,已知慢车比快车早出发小时,则、两地的距离为________ .
三、解答题(本大题共5个小题,共48分)
14、(12分)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,
(1)求∠EAF的度数;
(2)在图①中,连结BD分别交AE、AF于点M、N,将△ADN绕点A顺时针旋转90°至△ABH位置,连结MH,得到图②.求证:MN2=MB2+ ND2 ;
(3)在图②中,若AG=12, BM=,直接写出MN的值.
15、(8分)如图,AE∥BF,AC平分∠BAE,交BF于点C.
(1)求证:AB=BC;
(2)尺规作图:在AE上找一点D,使得四边形ABCD为菱形(不写作法,保留作图痕迹)
16、(8分)如图,在中,,,,以线段为边向外作等边,点是线段的中点,连结并延长交线段于点.
(1)求证:四边形为平行四边形;
(2)求平行四边形的面积;
(3)如图,分别作射线,,如图中的两个顶点,分别在射线,上滑动,在这个变化的过程中,求出线段的最大长度.
17、(10分)如图,在ABCD中,经过A,C两点分别作AE⊥BD,CF⊥BD,E,F为垂足.
(1)求证:△AED≌△CFB;(2)求证:四边形AFCE是平行四边形.
18、(10分)如图,矩形的对角线交于点,且.
(1)求证:四边形是菱形;
(2)若,求菱形的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平面直角坐标系中,△ABC与△A′B'C′关于点P位似且顶点都在格点上,则位似中心P的坐标是______.
20、(4分)如图,在△ABC中,点D、E、F分别是BC、AB、AC的中点,如果△ABC的周长为20+2,那么△DEF的周长是_____.
21、(4分)若关于的一元一次不等式组所有整数解的和为-9,且关于的分式方程有整数解,则符合条件的所有整数为__________.
22、(4分)如图,在平行四边形中,度,,,则______.
23、(4分)正方形,,按如图所示放置,点、、在直线上,点、、在x轴上,则的坐标是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某校八年级学生在一次射击训练中,随机抽取10名学生的成绩如下表,请回答问题:
(1)填空:10名学生的射击成绩的众数是 ,中位数是 .
(2)求这10名学生的平均成绩.
(3)若9环(含9环)以上评为优秀射手,试估计全年级500名学生中有多少是优秀射手?
25、(10分)如图,在矩形ABCD中,E是对角线BD上一点(不与点B、D重合),过点E作EF∥AB,且EF=AB,连接AE、BF、CF。
(1)若DE=DC,求证:四边形CDEF是菱形;
(2)若AB=,BC=3,当四边形ABFE周长最小时,四边形CDEF的周长为__________。
26、(12分)已知,在平行四边形ABCD中,E为AD上一点,且AB=AE,连接BE交AC于点H,过点A作AF⊥BC于F,交BE于点G.
(1)若∠D=50°,求∠EBC的度数;
(2)若AC⊥CD,过点G作GM∥BC交AC于点M,求证:AH=MC.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据正方形的性质易证S△DEF∽S△AEB,再根据相似三角形的面积比为相似比的平方即可得解.
【详解】
解:∵四边形ABCD为正方形,
∴∠EDF=∠EBA,∠EFD=∠EAB,AB=DC,
∴,
∵DC=3DF,∴DF:AB=1:3
∴S△DEF:S△AEB=1:9.
故选:D.
本题主要考查相似三角形的判定与性质,正方形的性质,解此题的关键在于熟练掌握其知识点.
2、D
【解析】根据完全平方公式:(a+b)2=a2+2ab+b2与(a-b)2=a2-2ab+b2可知,要使x2+mxy+y2符合完全平方公式的形式,该式应为:x2+2xy+y2=(x+y)2或x2-2xy+y2=(x-y)2. 对照各项系数可知,系数m的值应为2或-2.
故本题应选D.
点睛:
本题考查完全平方公式的形式,应注意完全平方公式有(a+b)2、(a-b)2两种形式. 考虑本题时要全面,不要漏掉任何一种形式.
3、D
【解析】
利用乘法法则计算即可求出值
【详解】
解:原式=-54,
故选D.
此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.
4、A
【解析】
解:根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须.
故选A.
5、A
【解析】
据平行四边形的判定方法对A进行判断;
根据矩形的判定方法对B进行判断;
根据正方形的判定方法对C进行判断;
根据菱形的判定方法对D进行判断.
【详解】
A、对角线互相平分的四边形是平行四边形,所以A选项正确;
B、对角线相等的平行四边形是矩形,所以B选项错误;
C、对角线相等且互相垂直平分的四边形是正方形,所以C选项错误;
D、对角线互相垂直的平行四边形是菱形,所以D选项错误.
故选A.
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.
6、D
【解析】
直接根据一次函数的性质即可解答
【详解】
A. 直线y=2x−5经过第一、三、四象限,错误;
B. 直线y=2x−5与x轴交于(,0),错误;
C. 直线y=2x−5,y随x的增大而增大,错误;
D. 直线y=2x−5与y轴交于(0,−5),正确
故选:D.
此题考查一次函数的性质,解题关键在于掌握其性质
7、D
【解析】
作DF⊥CE于F,构建两个直角三角形,运用勾股定理逐一解答即可.
【详解】
过D作DF⊥CE于F,根据等腰三角形的三线合一,得:CF=1,
在直角三角形CDF中,根据勾股定理,得:DF2=CD2-CF2=22-12=3,
在直角三角形BDF中,BF=BC+CF=1+1=2,
根据勾股定理得:BD=,
故选D.
本题考查了等边三角形的性质,勾股定理等,正确添加辅助线、熟练应用相关的性质与定理是解题的关键.
8、A
【解析】
利用线段的垂直平分线的性质,得到与的关系,再由勾股定理计算出的长即可.
【详解】
解:四边形是矩形,
,,,
,
,
设,则,
在中,根据勾股定理可得,
即,
解得,
故选:.
本题考查了利用线段的垂直平分线的性质、矩形的性质及勾股定理综合解答问题的能力,在解上面关于的方程时有时出现错误,而误选其它选项.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
把点A的坐标代入一次函数y=3x﹣2解析式中,即可求出n的值.
【详解】
∵点A(1,n)在一次函数y=3x﹣2的图象上,
∴n=3×1﹣2=1.
故答案为:1.
本题考查了点在一次函数图象上的条件,即点的坐标满足一次函数解析式,正确计算是解题的关键.
10、 (−1,0).
【解析】
先根据直线平行的问题得到k=-3,再把(0,-3)代入y=-3x+b求出b,从而得到直线解析式,然后计算函数值为0所对应的自变量的值即可得到直线与x轴的交点坐标.
【详解】
∵直线y=kx+b和直线y=−3x平行,
∴k=−3,
把(0,−3)代入y=−3x+b得b=−3,
∴直线解析式为y=−3x−3,
当y=0时,−3x−3=0,解得x=−1,
∴直线y=−3x−3与x轴的交点坐标为(−1,0).
故答案为(−1,0).
此题考查两条直线相交或平行问题,把已知点代入解析式是解题关键
11、a(a﹣1)1
【解析】
试题分析:此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解.a3﹣1a1+a=a(a1﹣1a+1)=a(a﹣1)1.故答案为a(a﹣1)1.
考点:提公因式法与公式法的综合运用.
12、﹣8
【解析】
试题分析:∵关于x的方程无解,∴x=5
将分式方程去分母得:,
将x=5代入得:m=﹣8
【详解】
请在此输入详解!
13、1
【解析】
分析:根据数量关系“路程=速度×时间”结合函数图象,即可得出v快=v慢,设两车相遇的时间为t,根据数量关系“路程=速度×时间”即可得出t•v慢=(t-2)•v快=276,解之即可得出t与v慢的值,将慢车的速度代入s=18v慢中即可求出A、B两地的距离.
详解:
根据函数图象可知:s=(14-2)v快=18v慢,
∴v快=v慢.
设两车相遇的时间为t,
根据函数图象可知:t•v慢=(t-2)•v快=276,
解得:t=6,v慢=46,
∴s=18v慢=18×46=1.
故答案为1.
点睛:考查了函数的图象以及解一元一次方程,根据数量关系结合函数图象找出快、慢两车速度间的关系是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)45°;(2)证明见解析;(3).
【解析】
(1)∵正方形ABCD,AG⊥EF,
∴AG=AB,∠ABE=∠AGE=∠BAD=90°,AE=AE,
∴Rt△ABE≌Rt△AGE,∴∠BAE=∠GAE,
同理Rt△ADF≌Rt△AGF,∴∠GAF=∠DAF,
∴∠EAF=∠BAD=45°;
(2)证明:由旋转知,∠BAH=∠DAN,AH=AN,
∵∠BAD=90°,∠EAF=45°,∴∠BAM+∠DAN=45°,
∴∠HAM=∠BAM+∠BAH=∠BAM+∠DAN =45°,
∴∠HAM=∠NAM,AM=AM,
∴△AHM≌△ANM,
∴MN=MH,∵四边形ABCD是正方形,∴∠ADB=∠ABD=45°
由旋转知,∠ABH=∠ADB=45°,HB=ND,
∴∠HBM=∠ABH+∠ABD=90°,
∴,∴;
(3).
以下解法供参考∵,∴;
在(2)中,
设,则.
∴.即.
15、 (1)证明见解析;(2)画图见解析.
【解析】
(1)根据平行线的性质和角平分线的定义即可得到结论;
(2)在射线AE上截取AD=AB,根据菱形的判定定理即可得到结论.
【详解】
解:(1)∵AE∥BF,
∴∠EAC=∠ACB,
又∵AC平分∠BAE,
∴∠BAC=∠EAC,
∴∠BAC=∠ACB,
∴BA=BC.
(2)主要作法如下:
本题考查了作图-复杂作图,菱形的判定,正确的作出图形是解题的关键.
16、 (1)证明见解析;(2);(3).
【解析】
(1)在Rt△ABC中,E为AB的中点,则CE=AB,BE=AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD∥BC,则四边形BCFD是平行四边形;
(2)在Rt△ABC中,求出BC,AC即可解决问题;
(3)取的中点,连结,,,根据三角形三边关系进行求解即可得.
【详解】
(1)在中,,,,
在等边中,,,
为的中点,,
又,
,
在中,,为的中点,,,
,,,
又,,
又,,
,
又,,即,
四边形是平行四边形;
(2)在中,,,
,
∴,
;
(3)取的中点,连结,,
,
的最大长度.
本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题.
17、(1)见解析;(2)见解析.
【解析】
(1)根据平行四边形的性质可得AD=BC,∠CBF=∠ADE,再根据垂线的性质可得∠CFB=∠AED=90°,再根据全等三角形的判定(角角边)来证明即可;
(2)根据全等三角形的性质可得AE=CF,再由AE⊥BD,CF⊥BD可得AE∥CF,根据一组对边平行且相等的四边形为平行四边形即可证明.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠CBF=∠ADE,
∵AE⊥BD,CF⊥BD,
∴∠CFB=∠AED=90°,
∴△AED≌△CFB(AAS).
(2)证明:∵△AED≌△CFB,
∴AE=CF,
∵AE⊥BD,CF⊥BD,
∴AE∥CF,
∴四边形AFCE是平行四边形.
全等三角形的判定和性质及平行四边形的判定和性质是本题的考点,熟练掌握基础知识是解题的关键.
18、(1)证明见解析;(2)
【解析】
(1)根据平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可.
(2)解直角三角形求出BC=3,AB=DC=,连接OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=BC=,求出OE=2OF=3,求出菱形的面积即可.
【详解】
解:(1)∵,
∴四边形OCED是平行四边形,
∵四边形ABCD是矩形,
∴AC=BD,OC=AC,OD=BD,
∴OC=OD,
∴四边形OCED是菱形;
(2)在矩形ABCD中,∠ABC=90°,∠BAC=30°,AC=6,
∴BC=AC=3,
∴AB=DC=,
连接OE,交CD于点F,
∵四边形ABCD为菱形,
∴F为CD中点,
∵O为BD中点,
∴OF=BC=,
∴OE=2OF=3,
∴S菱形OCED=×OE×CD=×3×=.
本题考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、 (4,5)
【解析】
直接利用位似图形的性质得出对应点位置进而得出答案.
【详解】
解:如图所示:连接AA′,BB′,两者相交于点P,
∴位似中心P的坐标是(4,5).
故答案为:(4,5).
本题主要考查了位似变换,正确掌握位似图形的性质是解题关键.
20、10+
【解析】
根据三角形中位线定理得到,,,根据三角形的周长公式计算即可.
【详解】
解:∵△ABC的周长为,
∴AB+AC+BC=,
∵点D、E、F分别是BC、AB、AC的中点,
∴,,,
∴△DEF的周长=DE+EF+DF=(AC+BC+AB)=10+,
故答案为:10+.
本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
21、-4,-1.
【解析】
不等式组整理后,根据所有整数解的和为-9,确定出x的值,进而求出a的范围,分式方程去分母转化为整式方程,检验即可得到满足题意a的值,求出符合条件的所有整数a即可.
【详解】
解:,
不等式组整理得:-4≤x<a,
由不等式组所有整数解的和为-9,得到-2<a≤-1,或1<a≤2,
即-6<a≤-1,或1<a≤6,
分式方程,
去分母得:y2-4+2a=y2+(a+2)y+2a,
解得:y=- ,
经检验y=-为方程的解,
得到a≠-2,
∵有整数解,
∴则符合条件的所有整数a为-4,-1,
故答案为:-4,-1.
此题考查分式方程的解,一元一次不等式组的整数解,熟练掌握运算法则是解题的关键.
22、
【解析】
依据平行四边形的对角互相平分可得AO=3cm,在Rt△ABO中利用勾股定理可求AB长.
【详解】
∵四边形ABCD是平行四边形,
∴AO=AC=3cm.
在Rt△ABO中,OB=6cm,AO=3cm,
利用勾股定可得AB=.
故答案为3.
本题主要考查了平行四边形的性质、勾股定理,利用平行四边形的对角线互相平分求解三角形中某些线段的长度是解决这类问题通常的方法.
23、
【解析】
先求出A1、A2、A3的坐标,找出规律,即可得出的坐标.
【详解】
解:∵直线y=x+1和y轴交于A1,
∴A1的坐标(0,1),即OA1=1,
∵四边形C1OA1B1是正方形,
∴OC1=OA1=1,
把x=1代入y=x+1得:y=2,
∴A2的坐标为(1,2),
同理,A3的坐标为(3,4),
…
∴An的坐标为(2n-1-1,2n-1),
∴的坐标是,
故答案为:.
本题考查了一次函数图象上点的坐标特征以及正方形的性质,通过求出第一个正方形、第二个正方形和第三个正方形的边长得出规律是解决问题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)7环,7环;(2)7.5环;(3)100名
【解析】
(1)根据众数、中位数的意义将10名学生的射击成绩排序后找出第5、6位两个数的平均数即为中位数,出现次数最多的数是众数.
(2)根据平均数的计算方法进行计算即可,
(3)样本估计总体,用样本中优秀人数的所占的百分比估计总体中优秀的百分比,用总人数乘以这个百分比即可.
【详解】
解:(1)射击成绩出现次数最多的是7环,共出现5次,因此众数是7环,射击成绩从小到大排列后处在第5、6位的数都是7环,因此中位数是7环,
故答案为:7环,7环.
(2)10-1-5-2=2,=7.5环,
答:这10名学生的平均成绩为7.5环.
(3)500×=100人,
答:全年级500名学生中有100名是优秀射手.
考查平均数、众数、中位数的意义及求法,理解样本估计总体的统计方法.
25、(1)见解析;(2)
【解析】
(1)由CD//EF,CD=EF可证四边形CDEF是平行四边形,由于DE=DC可证四边形CDEF是菱形
(2)当四边形ABFE周长最小时此时AE⊥BD,利用勾股定理可求BD、AE、ED的长度,进而求四边形CDEF的周长即可
【详解】
证明:(1)在矩形ABCD中CD∥AB,CD=AB,
∵EF∥AB, EF=AB
∴CD//EF,CD=EF
∴四边形CDEF是平行四边形,
又∵DE=DC
∴四边形CDEF是菱形
(2) 在矩形ABCD中,∠BAD=90°,AD=BC=3
∴
当四边形ABFE周长最小时,AE⊥BD
此时;BD= ,∠AED=90°
由(1)可知四边形CDEF是平行四边形
四边形CDEF的周长为
故:当四边形ABFE周长最小时,四边形CDEF的周长为
本题考查了菱形的判定方法,熟练掌握菱形的判定方法是解题的关键.
26、(1)∠EBC=25°;(2)见解析;
【解析】
(1)根据等边对等角以及平行线的性质,即可得到∠1=∠2=∠ABC,再根据平行四边形ABCD中,∠D=50°=∠ABC,可得出∠EBC的度数;
(2)过M作MN⊥BC于N,过G作GP⊥AB于P,则∠CNM=∠APG=90°,先根据AAS判定△BPG≌△BFG,得到PG=GF,根据矩形GFNM中GF=MN,即可得出PG=NM,进而判定△PAG≌△NCM(AAS),可得AG=CM,再根据等角对等边得到AH=AG,即可得到结论.
【详解】
(1)∵AB=AE,
∴∠1=∠3,
∵AE∥BC,
∴∠2=∠3,
∴∠1=∠2=∠ABC,
又∵平行四边形ABCD中,∠D=50°,
∴∠ABC=50°,
∴∠EBC=25°;
(2)证明:如图,过M作MN⊥BC于N,过G作GP⊥AB于P,则∠CNM=∠APG=90°,
由(1)可得,∠1=∠2,
∵AF⊥BC,
∴∠BPG=∠BFG=90°,
在△BPG和△BFG中,
,
∴△BPG≌△BFG(AAS),
∴PG=GF,
又∵矩形GFNM中,GF=MN,
∴PG=NM,
∵AC⊥CD,CD∥AB,
∴∠BAC=90°=∠AFB,
即∠PAG+∠ABF=∠NCM+∠ABC=90°,
∴∠PAG=∠NCM,
在△PAG和△NCM中,
,
∴△PAG≌△NCM(AAS),
∴AG=CM,
∵∠1=∠2,∠BAH=∠BFG,
∴∠AHG=∠FGB=∠AGH,
∴AG=AH,
∴AH=MC.
此题考查全等三角形的判定与性质,平行四边形的性质,解题关键在于掌握判定定理和作辅助线.
题号
一
二
三
四
五
总分
得分
批阅人
环数
6
7
8
9
人数
1
5
2
相关试卷
这是一份湖北省黄石市黄石港区黄石市第十五中学2024-2025学年九年级上学期开学数学试题(无答案),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖北省黄石市黄石港区黄石市第十五中学2024-2025学年九年级上学期开学数学试题,共4页。
这是一份2023-2024学年湖北省黄石市黄石港区第十四中学九上数学期末教学质量检测模拟试题含答案,共7页。试卷主要包含了若点在反比例函数上,则的值是,下列说法中正确的有,反比例函数y=的图象经过点等内容,欢迎下载使用。