2024年贵州省遵义市桐梓县数学九上开学复习检测试题【含答案】
展开
这是一份2024年贵州省遵义市桐梓县数学九上开学复习检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下面四个二次根式中,最简二次根式是( )
A.B.C.D.
2、(4分)下列手机软件图标中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
3、(4分)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了( )
A.2cmB.3cmC.4cmD.5cm
4、(4分)已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为( )
A.45,48B.44,45C.45,51D.52,53
5、(4分)在平面直角坐标系中,点(a-2,a)在第三象限内,则a的取值范围是( )
A.B.C.D.
6、(4分)下列二次根式中,最简二次根式的是( )
A.B.C.D.
7、(4分)随着互联网的发展,互联网消费逐渐深入人们生活,如图是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,下列说法:①“快车”行驶里程不超过5公里计费8元;②“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;③A点的坐标为(6.5,10.4);④从哈尔滨西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元.其中正确的个数有( )
A.1个B.2个C.3个D.4个
8、(4分)已知直线,则下列说法中正确的是( )
A.这条直线与轴交点在正半轴上,与轴交点在正半轴上
B.这条直线与轴交点在正半轴上,与轴交点在负半轴上
C.这条直线与轴交点在负半轴上,与轴交点在正半轴上
D.这条直线与轴交点在负半轴上,与轴交点在负半轴上
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)边长为2的等边三角形的面积为__________
10、(4分)如图,某河堤的横断面是梯形ABCD,BC∥AD,已知背水坡CD的
坡度i=1:2.4,CD长为13米,则河堤的高BE为 米.
11、(4分)当a=______时,最简二次根式与是同类二次根式.
12、(4分)已知x+y=﹣1,xy=3,则x2y+xy2=_____.
13、(4分)如果一次函数y=kx+2的函数值y随着x的值增大而减小,那么k的取值范围是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
(发现证明)小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
(类比引申)如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足 关系时,仍有EF=BE+FD.
(探究应用)如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)
15、(8分)如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连接CF.
(1)求证:△AEF≌△DEB;
(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.
16、(8分)如图,△ABC中,A(﹣1,1),B(﹣4,2),C(﹣3,4).
(1)在网格中画出△ABC向右平移5个单位后的图形△A1B1C1;
(2)在网格中画出△ABC关于原点O成中心对称后的图形△A2B2C2;
(3)在x轴上找一点P使PA+PB的值最小请直接写出点P的坐标.
17、(10分)如图,出租车是人们出行的一种便利交通工具,折线ABC是在我市乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图象.
(1)根据图象,当x≥3时y为x的一次函数,请写出函数关系式;
(2)某人乘坐13km,应付多少钱?
(3)若某人付车费42元,出租车行驶了多少千米?
18、(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义.
结合上面经历的学习过程,现在来解决下面的问题:在函数中,当时,当时,.
求这个函数的表达式;
在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;
已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知实数a在数轴上的位置如图所示,化简: +|a﹣1|=_____.
20、(4分)如图,矩形边,,沿折叠,使点与点重合,点的对应点为,将绕着点顺时针旋转,旋转角为.记旋转过程中的三角形为,在旋转过程中设直线与射线、射线分别交于点、,当时,则的长为_______.
21、(4分)如图,在平面直角坐标系中,点A、B、C的坐标分别是A(﹣2,5),B(﹣3,﹣1),C(1,﹣1),在第一象限内找一点D,使四边形ABCD是平行四边形,那么点D的坐标是_____.
22、(4分)已知点与点关于y轴对称,则__________.
23、(4分)铁路部门规定旅客免费携行李箱的长宽高之和不超过,某厂家生产符合该规定的行李箱,已知行李箱的高为,长与宽之比为,则该行李箱宽度的最大值是_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)在⊿ABC中,AB=17cm,BC=16cm,,BC边上的中线AD=15cm,问⊿ABC是什么形状的三角形?并说明你的理由.
25、(10分)(1)分解因式:;
(2)解方程:
26、(12分)如图,是边长为2的等边三角形,将沿直线平移到的位置,连接.
(1)求平移的距离;
(2)求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
分析:根据最简二次根式的概念进行判断即可.
详解:A.是最简二次根式;
B.被开方数含分母,故B不是最简二次根式;
C.被开方数含能开得尽方的因数,故C不是最简二次根式;
D.被开方数含有小数,故D不是最简二次根式.
故选A.
点睛:本题考查了最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.
2、B
【解析】
试题分析:A.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故A选项错误;
B.∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故B选项正确.
C.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故C选项错误;
D.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故B选项错误.
考点:1.中心对称图形;2.轴对称图形.
3、A
【解析】
根据勾股定理可以得到AD和BD的长度,然后用AD+BD-AB的长度即为所求.
【详解】
根据题意可得BC=4cm,CD=3cm,根据Rt△BCD的勾股定理可得BD=5cm,则AD=BD=5cm,所以橡皮筋被拉长了(5+5)-8=2cm.
主要考查了勾股定理解直角三角形.
4、A
【解析】
先把原数据按由小到大排列,然后根据众数、中位数的定义求解.
【详解】
数据从小到大排列为:44,45,45,51,52,54,
所以这组数据的众数为45,中位数为×(45+51)=48,
故选A.
本题考查了众数与中位数,熟练掌握众数与中位数的概念以及求解方法是解题的关键.一组数据中出现次数最多的数据叫做众数.一组数据按从小到大的顺序排列,位于最中间的数(或中间两个数的平均数)叫做这组数据的中位数.
5、B
【解析】
利用第三象限点的坐标特征得到,然后解不等式组即可.
【详解】
∵点P(a﹣2,a)在第三象限内,∴,∴a<1.
故选B.
本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.也考查了第三象限点的坐标特征.
6、C
【解析】
判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【详解】
A、=,被开方数含分母,不是最简二次根式;故A选项错误;
B、=,被开方数为小数,不是最简二次根式;故B选项错误;
C、,是最简二次根式;故C选项正确;
D.=,被开方数,含能开得尽方的因数或因式,故D选项错误;
故选C.
考点:最简二次根式.
7、D
【解析】
根据“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象可知:行驶里程不超过5公里计费8元,即①正确;
“滴滴顺风车”行驶里程超过2公里的部分,每公里计费为(14.1﹣5)÷(10﹣2)=1.2(元),故②正确;
设x≥5时,“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系式为y1=k1x+b1,将点(5,8)、(10,11)代入函数解析式得:,解得:.
∴“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系式为y1=1.1x;
当x≥2时,设“滴滴顺风车”的行驶里程x(公里)与计费y(元)之间的函数关系式为y2=k2x+b2,将点(2,5)、(10,14.1)代入函数解析式得:,解得:.
∴“滴滴顺风车”的行驶里程x(公里)与计费y(元)之间的函数关系式为y2=1.2x+2.1.
联立y1、y2得:,解得:.
∴A点的坐标为(1.5,10.4),③正确;
令x=15y1=1.1×15=24;令x=15,y2=1.2×15+2.1=20.1.y1﹣y2=24﹣20.1=3.4(元).
即从哈尔滨西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元,④正确.
综上可知正确的结论个数为4个.
故选D.
8、C
【解析】
先确定直线y=kx+b经过第一、二、三限,即可对各选项进行判断.
【详解】
解:∵直线y=kx+b,k>0,b>0,
∴直线y=kx+b经过第一、二、三象限,
故选:C.
本题考查了一次函数与系数的关系:对于一次函数y=kx+b,它与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.当k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.
【详解】
∵等边三角形高线即中点,AB=2,
∴BD=CD=1,
在Rt△ABD中,AB=2,BD=1,
∴
∴
故答案为:
考查等边三角形的性质以及面积,勾股定理等,熟练掌握三线合一的性质是解题的关键.
10、1
【解析】
在Rt△ABE中,根据tan∠BAE的值,可得到BE、AE的比例关系,进而由勾股定理求得BE、AE的长,由此得解.
解:作CF⊥AD于F点,
则CF=BE,
∵CD的坡度i=1:2.4=CF:FD,
∴设CF=1x,则FD=12x,
由题意得CF2+FD2=CD2
即:(1x)2+(12x)2=132
∴x=1,
∴BE=CF=1
故答案为1.
本题主要考查的是锐角三角函数的定义和勾股定理的应用.
11、1.
【解析】
同类二次根式是指化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.
【详解】
解: ∵最简二次根式与是同类二次根式,
∴a﹣2=10﹣2a, 解得:a=1
故答案为:1.
本题考查同类二次根式.
12、-1
【解析】
直接利用提取公因式法分解因式,进而把已知数据代入求出答案.
【详解】
解:∵x+y=﹣1,xy=1,∴x2y+xy2=xy(x+y)
=1×(﹣1)
=﹣1.
故答案为﹣1.
本题主要考查了提取公因式法分解因式,正确分解因式是解题的关键.
13、k<1.
【解析】
根据一次函数的性质解答即可.
【详解】
∵一次函数y=kx+2,函数值y随x的值增大而减小,
∴k<1.
故答案为:k<1.
本题考查了一次函数的图像与性质,对于一次函数y=kx+b(k为常数,k≠1),当k>1时,y随x的增大而增大;当k
相关试卷
这是一份2024年贵州省遵义市桐梓县私立达兴中学九上数学开学达标检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年贵州省桐梓县数学九年级第一学期开学调研模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份贵州省遵义市桐梓县2023-2024学年数学九上期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了下列说法中正确的有,如图,是用棋子摆成的“上”字, 见解析,B2,C2等内容,欢迎下载使用。