贵州遵义市桐梓县2024年数学九上开学监测模拟试题【含答案】
展开
这是一份贵州遵义市桐梓县2024年数学九上开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)用配方法解关于的一元二次方程,配方后的方程可以是( )
A.B.
C.D.
2、(4分)下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是=±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是( )
A.0个B.1个 C.2个D.3个
3、(4分)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得( )
A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0
4、(4分)如图,菱形ABCD的对角线AC、BD的长分别是3cm、4cm,AE⊥BC于点E,则AE的长是( )
A. cmB.cmC. cmD.2 cm
5、(4分)已知点A(﹣2,a),B(﹣1,b),C(3,c)都在函数y=﹣的图象上,则a、b、c的大小关系是( )
A.a<b<cB.b<a<cC.c<b<aD.c<a<b
6、(4分)如图,ABCD的对角线、交于点,顺次联结ABCD各边中点得到的一个新的四边形,如果添加下列四个条件中的一个条件:①⊥;②;③;④,可以使这个新的四边形成为矩形,那么这样的条件个数是()
A.1个;B.2个;
C.3个;D.4个.
7、(4分)用配方法解一元二次方程时,方程变形正确的是( )
A.B.C.D.
8、(4分)下列各式计算正确的是
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)矩形(非正方形)四个内角的平分线围成的四边形是__________形.(埴特殊四边形)
10、(4分)已知:正方形ABCD的边长为8,点E、F分别在AD、CD上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为_____.
11、(4分)如图,正方形和正方形的边长分别为3和1,点、分别在边、上,为的中点,连接,则的长为_________.
12、(4分)如图,四边形是一块正方形场地,小华和小芳在边上取定一点,测量知,,这块场地的对角线长是________.
13、(4分)计算:(2019﹣)0+(﹣1)2017+|2﹣π|+=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)我市晶泰星公司安排名工人生产甲、乙两种产品,每人每天生产件甲产品或件乙产品.根据市场行情测得,甲产品每件可获利元,乙产品每件可获利元.而实际生产中,生产乙产品需要数外支出一定的费用,经过核算,每生产件乙产品,当天每件乙产品平均荻利减少元,设每天安排人生产乙产品.
(1)根据信息填表:
(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多元,试问:该企业每天生产甲、乙产品可获得总利润是多少元?
15、(8分)计算:
(1) (2)(4)÷2
16、(8分)如图,正方形ABCD的边长为4,动点E从点A出发,以每秒2个单位的速度沿A→D→A运动,动点G从点A出发,以每秒1个单位的速度沿A→B运动,当有一个点到达终点时,另一点随之也停止运动.过点G作FG⊥AB交AC于点F.设运动时间为t(单位:秒).以FG为一直角边向右作等腰直角三角形FGH,△FGH与正方形ABCD重叠部分的面积为S.
(1)当t=1.5时,S=________;当t=3时,S=________.
(2)设DE=y1,AG=y2,在如图所示的网格坐标系中,画出y1与y2关于t的函数图象.并求当t为何值时,四边形DEGF是平行四边形?
17、(10分)(1)计算:;
(2)已知x=2−,求(7+4)x2+(2+)x+的值
18、(10分)某学校计划购买若干台电脑,现从两家商场了解到同一种型号的电脑报价均为6000元,并且多买都有一定的优惠.各商场的优惠条件如下表所示:
(1)设学校购买台电脑,选择甲商场时,所需费用为元,选择乙商场时,所需费用为元,请分别求出,与之间的关系式.
(2)什么情况下,两家商场的收费相同?什么情况下,到甲商场购买更优惠?什么情况下,到乙商场购买更优惠?
(3)现在因为急需,计划从甲乙两商场一共买入10台电脑,已知甲商场的运费为每台50元,乙商场的运费为每台60元,设总运费为元,从甲商场购买台电脑,在甲商场的库存只有4台的情况下,怎样购买,总运费最少?最少运费是多少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)式子在实数范围内有意义,则 x 的取值范围是_______ .
20、(4分)如图,直线经过点和点,直线经过点,则不等式组的解集是______.
21、(4分)在平面直角坐标系中,已知一次函数y=x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1_____y2(填“>”,“<”或“=”).
22、(4分)如图,在中,,点分别是边的中点,延长到点,使,得四边形.若使四边形是正方形,则应在中再添加一个条件为__________.
23、(4分)在正方形ABCD中,E在AB上,BE=2,AE=1,P是BD上的动点,则PE和PA的长度之和最小值为___________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系中,菱形的顶点与原点重合,点在轴的正半轴上,点在函数的图象上,点的坐标为.
(1)求的值.
(2)将点沿轴正方向平移得到点,当点在函数的图象上时,求的长.
25、(10分)小芳从家骑自行车去学校,所需时间()与骑车速度()之间的反比例函数关系如图.
(1)小芳家与学校之间的距离是多少?
(2)写出与的函数表达式;
(3)若小芳点分从家出发,预计到校时间不超过点分,请你用函数的性质说明小芳的骑车速度至少为多少?
26、(12分)如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,求证:∠AEF=90°.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
在本题中,把常数项−3移项后,应该在左右两边同时加上一次项系数−2的一半的平方.
【详解】
解:把方程x2−2x−3=0的常数项移到等号的右边,得到x2−2x=3,
方程两边同时加上一次项系数一半的平方,得到x2−2x+1=3+1,
配方得(x−1)2=1.
故选:A.
本题考查了配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
2、D
【解析】
①实数和数轴上的点是一一对应的,正确;
②无理数是开方开不尽的数,错误;
③负数没有立方根,错误;
④16的平方根是±4,用式子表示是±=±4,错误;
⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,正确.
错误的一共有3个,故选D.
3、A
【解析】
解:∵一次函数y=kx+b的图象经过一、三象限,
∴k>1,
又该直线与y轴交于正半轴,
∴b>1.
∴k>1,b>1.
故选A.
4、B
【解析】
根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.
【详解】
解:∵四边形ABCD是菱形,
∴CO=AC=cm,BO=BD=2cm,AO⊥BO,
∴BC=cm,
∴S菱形ABCD=×3×4=6cm2,
∵S菱形ABCD=BC×AE,
∴BC×AE=6,
∴AE=cm.
故选:B.
此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.
5、D
【解析】
先把各点代入反比例函数的解析式,求出a、b、c的值,再比较大小即可.
【详解】
∵点A(-2,a),B(-1,b),C(3,c)都在函数的图象上,
∴,
∴b<a<c.
故选B.
考查的是反比例函数图象上点的坐标特点,熟知反比例函数的图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
6、C
【解析】
根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.
【详解】
解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.
①∵AC⊥BD,∴新的四边形成为矩形,符合条件;
②∵四边形ABCD是平行四边形,∴AO=OC,BO=DO.
∵C△ABO=C△CBO,∴AB=BC.
根据等腰三角形的性质可知BO⊥AC,∴BD⊥AC.所以新的四边形成为矩形,符合条件;
③∵四边形ABCD是平行四边形,∴∠CBO=∠ADO.
∵∠DAO=∠CBO,∴∠ADO=∠DAO.
∴AO=OD.
∴AC=BD,∴四边形ABCD是矩形,连接各边中点得到的新四边形是菱形,不符合条件;
④∵∠DAO=∠BAO,BO=DO,
∴AO⊥BD,即平行四边形ABCD的对角线互相垂直,
∴新四边形是矩形.符合条件.
所以①②④符合条件.
故选:C.
本题主要考查矩形的判定、平行四边形的性质、三角形中位线的性质.
7、B
【解析】
,
移项得:,
两边加一次项系数一半的平方得:,
所以,
故选B.
8、B
【解析】
利用二次根式的加减法对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的乘法法则对C进行判断;根据算术平方根的定义对D进行判断.
【详解】
解:A、3与不能合并,所以A选项错误;
B、原式==4,所以B选项正确;
C、原式==,所以C选项错误;
D、原式=2,所以D选项错误.
故选B.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、正方
【解析】
此类题根据矩形性质,三角形内角和定理及角平分线定义得到所求的四边形的各个角为90°,进而求解.
【详解】
∵AF,BE是矩形的内角平分线.
∴∠ABF=∠BAF-90°.
故∠1=∠2=90°.
同理可证四边形GMON四个内角都是90°,则四边形GMON为矩形.
又∵有矩形ABCD且AF、BE、DK、CJ为矩形ABCD四角的平分线,
∴有等腰直角△DOC,等腰直角△AMD,等腰直角△BNC,AD=BC.
∴OD=OC,△AMD≌△BNC,
∴NC=DM,
∴NC-OC=DM-OD,
即OM=ON,
∴矩形GMON为正方形,
故答案为正方.
本题考查的是矩形性质,角平分线定义,联系三角形内角和的知识可求解.
10、5
【解析】
根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°;然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.
【详解】
∵四边形ABCD为正方形,
∴∠BAE=∠D=90°,AB=AD,
在△ABE和△DAF中,∵AB=AD,∠BAE=∠D,AE=DF,
∴△ABE≌△DAF(SAS),
∴∠ABE=∠DAF,
∵∠ABE+∠BEA=90°,
∴∠DAF+∠BEA=90°,
∴∠AGE=∠BGF=90°,
∵点H为BF的中点,
∴GH=BF,
∵BC=8,CF=CD-DF=8-2=6,
∴BF==10,
∴GH=BF=5.
本题考查了正方形的性质,全等三角形的判定与性质,直角三角形两锐角互余等知识,掌握三角形全等的判定方法与正方形的性质是解题的关键.
11、
【解析】
延长GE交AB于点O,作PH⊥OE于点H,则PH是△OAE的中位线,求得PH的长和HG的长,在Rt△PGH中利用勾股定理求解.
【详解】
解:延长GE交AB于点O,作PH⊥OE于点H.
则PH∥AB.
∵P是AE的中点,
∴PH是△AOE的中位线,
∴PH= OA= ×(3-1)=1.
∵直角△AOE中,∠OAE=45°,
∴△AOE是等腰直角三角形,即OA=OE=2,
同理△PHE中,HE=PH=1.
∴HG=HE+EG=1+1=2.
∴在Rt△PHG中,PG=
故答案是:.
本题考查了正方形的性质、勾股定理和三角形的中位线定理,正确作出辅助线构造直角三角形是关键.
12、40m
【解析】
先根据勾股定理求出BC,故可得到正方形对角线的长度.
【详解】
∵,
∴,
∴对角线AC=.
故答案为:40m.
此题主要考查利用勾股定理解直角三角形,解题的关键是熟知勾股定理的运用.
13、π+2
【解析】
根据零指数幂,负整数指数幂,绝对值的性质计算即可.
【详解】
原式=.
故答案为:.
本题主要考查实数的混合运算,掌握实数的混合运算的顺序和法则是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1) ;;;(2)该企业每天生产甲、乙产品可获得总利润是元.
【解析】
(1)设每天安排x人生产乙产品,则每天安排(65-x)人生产甲产品,每天可生产x件乙产品,每件的利润为(120-2x)元,每天可生产2(65-x)件甲产品,此问得解;
(2)由总利润=每件产品的利润×生产数量结合每天生产甲产品可获得的利润比生产乙产品可获得的利润多650元,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.
【详解】
解:(1)设每天安排x人生产乙产品,则每天安排(65-x)人生产甲产品,每天可生产x件乙产品,每件的利润为(120-2x)元,每天可生产2(65-x)件甲产品.
故答案为:;;;
(2)依题意,得:15×2(65-x)-(120-2x)•x=650,
整理,得:x2-75x+650=0,
解得:x1=10,x2=65(不合题意,舍去),
∴15×2(65-x)+(120-2x)•x=2650,
答:该企业每天生产甲、乙产品可获得总利润是2650元.
本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x的代数式表示出每天生产甲产品的数量及每件乙产品的利润;(2)找准等量关系,正确列出一元二次方程.
15、(1)4+5(2)2+2
【解析】
(1)先进行乘法运算,然后把化简后合并即可.
(2)运用实数运算、二次根式化简,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【详解】
(1)原式=
(2)
此题考查二次根式的混合运算,实数运算、二次根式化简,掌握运算法则是解题关键
16、(1);;(2)当t=或t=4时,四边形DEGF是平行四边形.
【解析】
(1)当t=1.5时,如图①,重叠部分的面积是△FGH的面积,求出即可;当t=3时,如图②,重叠部分的面积是四边形FGBK的面积,也就是△FGH的面积减去△KBH的面积,求出即可;
(2)进行分类讨论,列出方程即可求出t的值.
【详解】
解:当t=1.5时,如图①,重叠部分的面积是△FGH的面积,所以S=;
当t=3时,如图②,重叠部分的面积是四边形FGBK的面积,也就是△FGH的面积减去△KBH的面积,所以S=×3×3-×2×2=.
(2)由题意可以求得
y1= ;y2=t(0≤t≤4).
相关试卷
这是一份贵州遵义市正安县2025届九上数学开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。
这是一份贵州省遵义市2024-2025学年九上数学开学复习检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份贵州省桐梓县联考2024年九上数学开学学业水平测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。