2024年福建省泉港一中学、城东中学数学九年级第一学期开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知,,,则的度数是( )
A.B.C.D.
2、(4分)下列特征中,平行四边形不一定具有的是( )
A.邻角互补B.对角互补C.对角相等D.内角和为360°
3、(4分)二次根式有意义的条件是( )
A.x<2B.x<﹣2C.x≥﹣2D.x≤2
4、(4分)若,两点都在直线上,则与的大小关系是( )
A.B.C.D.无法确定
5、(4分)如图,在平面直角坐标系中,点A1,A2,A3在直线y=x+b上,点B1,B2,B3在x轴上,△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形,若已知点A1(1,1),则点A3的纵坐标是( )
A.B.C.D.
6、(4分)如图,有一块直角三角形纸片,两直角边AB=6,BC=8,将△ABC折叠,使AB落在斜边AC上,折痕为AD,则BD的长为( )
A.6B.5C.4D.3
7、(4分)一个三角形的三边分别是3、4、5,则它的面积是( )
A.6B.12C.7.5D.10
8、(4分)在直角坐标系中,线段是由线段平移得到的,已知则的坐标为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平面直角坐标系中,若点P(2x+6,5x)在第四象限,则x的取值范围是_________;
10、(4分)正比例函数y=mx经过点P(m,9),y随x的增大而减小,则m=__.
11、(4分)八年级(1)班四个绿化小组植树的棵数如下:8,8,10, x .已知这组数据的众数和 平均数相等,那么这组数据的方差是_____.
12、(4分)若方程x2﹣x=0的两根为x1,x2(x1<x2),则x2﹣x1=______.
13、(4分)《九章算术》中记载:今有户不知高、广,竿不知长、短,横之不出四尺,纵之不出二尺,邪之适出.问户高、广、邪各几何?这段话翻译后是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)化简.
15、(8分)在正方形中,是对角线上的点,连接、.
(1)求证:;
(2)如果,求的度数.
16、(8分)如图,在平面直角坐标系中,网格图由边长为1的小正方形所构成,Rt△ABC的顶点分别是A(-1,3),B(-3,-1),C(-3,3).
(1)请在图1中作出△ABC关于点(-1,0)成中心对称△,并分别写出A,C对应点的坐标 ;
(2)设线段AB所在直线的函数表达式为,试写出不等式的解集是 ;
(3)点M和点N 分别是直线AB和y轴上的动点,若以,,M,N为顶点的四边形是平行四边形,求满足条件的M点坐标.
17、(10分)先化简,再求值:÷(a+),其中a=﹣1.
18、(10分)为了了解江城中学学生的身高情况,随机对该校男生、女生的身高进行抽样调查.已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制成如图所示的统计图表.
根据图表中提供的信息,回答下列问题:
(1)在样本中,男生身高的中位数落在________组(填组别序号),女生身高在B组的人数有________人;
(2)在样本中,身高在150≤x<155之间的人数共有________人,身高人数最多的在________组(填组别序号);
(3)已知该校共有男生500人、女生480人,请估计身高在155≤x<165之间的学生有多少人
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A,B,C分别落在点A',B',C'处,且点A',C',B在同一条直线上,则AB的长为__________.
20、(4分)分解因式:= .
21、(4分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年人均收入美元,预计2019年人均收入将达到美元,设2017年到2019年该地区人均收入平均增长率为,可列方程为__________.
22、(4分)如图,将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点G处,点D落在点H处.若∠1=62°,则图中∠BEG的度数为_____.
23、(4分)如图,点A是函数的图像上的一点,过点A作轴,垂足为点B,点C为x轴上的一点,连接AC,BC,若△ABC的面积为4,则K的值为_______
二、解答题(本大题共3个小题,共30分)
24、(8分).已知:如图4,在中,∠BAC=90°,DE、DF是的中位线,连结EF、AD. 求证:EF=AD.
25、(10分)已知y是x的一次函数,如表列出了部分y与x的对应值,求m的值.
26、(12分)如图,直线与直线交于点,直线经过点.
(1)求直线的函数表达式;
(2)直接写出方程组的解______;
(3)若点在直线的下方,直线的上方,写出的取值范围______.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
延长交于,依据,,可得,再根据三角形外角性质,即可得到.
【详解】
解:如图,
延长交于,
,,
,
又,
,
故选:.
本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.
2、B
【解析】
根据平行四边形的性质得到,平行四边形邻角互补,对角相等,内角和360°,而对角却不一定互补.
【详解】
解:根据平行四边形性质可知:A、C、D均是平行四边形的性质,只有B不是.
故选B.
本题考查平行四边形的性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.
3、C
【解析】
根据被开方数大于等于0列式计算即可得解.
【详解】
由题意得:x+1≥0,解得:x≥﹣1.
故选C.
本题考查了的知识点为:二次根式有意义的条件是被开方数是非负数.
4、C
【解析】
根据一次函数的性质进行判断即可.
【详解】
解:∵直线的K=2>0,
∴y随x的增大而增大,
∵-4<-2,
∴.
故选C.
本题考查了一次函数的增减性,当K>0时,y随x的增大而增大,当K<0时,y随x的增大而减小.
5、D
【解析】
设点A2,A3,A4坐标,根据等腰直角三角形的性质、结合函数解析式,即可求解.
【详解】
解:∵A1(1,1)在直线y=x+b上,
∴b=,
∴y=x+.
设A2(x2,y2),A3(x3,y3),
则有 y2=x2+,y3=x3+.
又∵△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形.
∴x2=2y1+y2,
x3=2y1+2y2+y3,
将点坐标依次代入直线解析式得到:
y2=y1+1
y3=y1+y2+1= y2
又∵y1=1
∴y2=,
y3=()2=,
∴点A3的纵坐标是,
故选:D.
此题主要考查了一次函数点坐标特点,以及等腰直角三角形斜边上高等于斜边长一半.解题的关键是找出点与直线之间的关系,进而求出点的坐标.
6、D
【解析】
设点B落在AC上的E点处,连接DE,如图所示,由三角形ABC为直角三角形,由AB与BC的长,利用勾股定理求出AC的长,设BD=x,由折叠的性质得到ED=BD=x,AE=AB=6,进而表示出CE与CD,在直角三角形DEC中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出BD的长.
【详解】
解:∵△ABC为直角三角形,AB=6,BC=8,
∴根据勾股定理得:,
设BD=x,由折叠可知:ED=BD=x,AE=AB=6,
可得:CE=AC-AE=10-6=4,CD=BC-BD=8-x,
在Rt△CDB'中,
根据勾股定理得:(8-x)2=42+x2,
解得:x=1,
则BD=1.
故答案为:1.
此题考查了勾股定理,利用了方程的思想,熟练掌握勾股定理的解本题的关键.
7、A
【解析】
由于32+42=52,易证此三角形是直角三角形,从而易求此三角形的面积.
【详解】
∵32+42=52,∴此三角形是直角三角形,
∴S△=×3×4=1.
故选:A.
本题考查了勾股定理的逆定理.解题的关键是先证明此三角形是直角三角形.
8、B
【解析】
根据点A和点A′的坐标判断出平移方式,根据平移方式可得点的坐标.
【详解】
解:∵点A的坐标为(−2,3),A′的坐标为(3,4),
∴线段AB向上平移1个单位,向右平移5个单位得到线段A′B′,
∵点B的坐标为(−3,1),
∴点B′的坐标为(2,2),
故选:B.
此题主要考查了坐标与图形变化—平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、﹣3<x<1
【解析】
根据第四象限内横坐标为正,纵坐标为负可得出答案.
【详解】
∵点P(2x-6,x-5)在第四象限,
∴
解得-3<x<1.故答案为-3<x<1.
本题考查了点的坐标、一元一次不等式组,解题的关键是知道平面直角坐标系中第四象限横、纵坐标的符号.
10、-1
【解析】
直接根据正比例函数的性质和待定系数法求解即可.
【详解】
解:把x=m,y=9代入y=mx中,
可得:m=±1,
因为y的值随x值的增大而减小,
所以m=-1,
故答案为-1.
本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0时,图象经过第一、三象限,y值随x的增大而增大;当k<0时,图象经过第二、四象限,y值随x的增大而减小.
11、1.
【解析】
根据题意先确定x的值,再根据方差公式进行计算即可.
【详解】
解:当x=10时,有两个众数,而平均数只有一个,不合题意舍去.
当众数为8时,根据题意得,
解得x=6,
则这组数据的方差是:.
故答案为1.
本题考查了数据的收集和处理,主要考查了众数、平均数和方差的知识,解题时需要理解题意,分类讨论.
12、1
【解析】
求出x1,x2即可解答.
【详解】
解:∵x2﹣x=0,
∴x(x﹣1)=0,
∵x1<x2,
∴解得:x1=0,x2=1,
则x2﹣x1=1﹣0=1.
故答案为:1.
本题考查一元二次方程的根求解,按照固定过程求解即可,较为简单.
13、x1=(x﹣4)1+(x﹣1)1
【解析】
根据题中所给的条件可知,竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高、宽、对角线长.
【详解】
解:根据题意可列方程为x1=(x﹣4)1+(x﹣1)1,
故答案为:x1=(x﹣4)1+(x﹣1)1.
本题考查勾股定理的运用,正确运用勾股定理,将数学思想运用到实际问题中是解答本题的关键,难度一般.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
解:原式=.
先将括号里面的通分后,将除法转换成乘法,约分化简.
15、 (1)详见解析;(2)
【解析】
(1)证明△ABP≌△ADP,可得BP=DP;
(2)证得∠ABP=∠APB,由∠BAP=45°可得出∠ABP=67.5°.
【详解】
证明:(1)四边形是正方形,
,,
在和中
,
,
,
(2),
,
又,
.
本题考查正方形的性质、全等三角形的判定和性质,解题的关键是熟练运用图形的性质证明问题.
16、(1)(-1,-3),(1,-3);(2)x>;(3)当点M为(2,9)或(-2,1)或(0,5)时,以A′,C′,M,N为顶点的四边形是平行四边形.
【解析】
(1)直接利用中心对称的性质得出对应点位置进而得出答案;
(2)由待定系数法可求直线AB的解析式,即可求解;
(3)分A'C'为边和对角线两种情况讨论,由平行四边形的性质可求点M坐标.
【详解】
解:(1)如图,△A'B'C'为所求,
∴A'(-1,-3),C'(1,-3)
故答案为:(-1,-3),(1,-3)
(2)∵AB所在直线的函数表达式是y=kx+b,且过A(-1,3),B(-3,-1),
∴,解得:
∴AB所在直线的函数表达式是y=2x+5
∴不等式2x+5>2的解集为:x>,
故答案为:x>;
(3)∵A'(-1,-3),C'(1,-3)
∴A'C'=2,A'C'∥x轴,
若A'C'为边,
∵以A′,C′,M,N为顶点的四边形是平行四边形
∴MN=A'C'=2,MN∥A'C'
∵点N在y轴上,
∴点M的横坐标为2或-2,
∵y=2×2+5=9或y=2×(-2)+5=1
∴点M(2,9)或(-2,1)
若A'C'为对角线,
∵以A′,C′,M,N为顶点的四边形是平行四边形
∴MN与A'C'互相平分,
∵点N在y轴上,A'C'的中点也在y轴上,
∴点M的横坐标为0,
∴y=5
∴点M(0,5)
综上所述:当点M为(2,9)或(-2,1)或(0,5)时,以A′,C′,M,N为顶点的四边形是平行四边形.
本题是一次函数综合题,考查了待定系数法求解析式,平行四边形的性质,中心对称的性质,利用分类讨论思想解决问题是本题的关键.
17、,
【解析】
先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算.
【详解】
解:
将代入上式有
原式=.
故答案为:;.
本题主要考查了分式的化简求值和二次根式的运算,其中熟练掌握分式混合运算法则是解题的关键.
18、(1)D;12;(2)16;C;(3)身高在155≤x<165之间的学生约有541人.
【解析】
从频数分布直方图可得到男生的总人数,则中位数是第20、21个人身高的平均数,女生与男生人数相同,由此可得到题(1)的答案;
结合上步所得以及各组的人数可求出身高在150≤x<155的总人数和身高最多的组别,从而解决(2);对于(3),可根据两幅统计图得到男女生身高在155≤x<165之间的学生的百分率,从而使问题得以解决.
【详解】
解:(1)因为在样本中,共有男生2+4+8+12+14=40(人),
所以中位数是第20、21个人身高的平均数,而2+4+12=18人,
所以男生身高的中位数位于D组,
女生身高在B组的人数有40×(1-30%-20%-15%-5%)=12(人).
(2)在样本中,身高在150≤x<155之间的人数共有4+12=16(人),身高人数最多的在C组;
(3)500× +480×(30%+15%)=541(人),
故估计身高在155≤x<165之间的学生约有541人.
本题主要考查从统计图表中获取信息,中等难度,解题的关键是要读懂统计图.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
由C′D∥BC,可得比例式,设AB=a,构造方程即可.
【详解】
设AB=a,根据旋转的性质可知C′D=a,A′C=2+a,
∵C′D∥BC,
∴,即,
解得a=−1− (舍去)或−1+.
所以AB长为.
故答案为.
本题主要考查了旋转的性质、相似三角形的判定和性质,解题的关键是找到图形中相似基本模型“A”型.
20、
【解析】
试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式。因此,
先提取公因式后继续应用平方差公式分解即可:。
21、
【解析】
根据题意列出2018年人均收入将达到的美元的式子,即可得出2019年人均收入将达到的美元的方程,进而得解.
【详解】
根据题意,可得
2018年人均收入将达到,
2019年人均收入将达到
即为
此题主要考查一元二次方程的实际应用,熟练掌握,即可解题.
22、56°
【解析】
根据矩形的性质可得AD//BC,继而可得∠FEC=∠1=62°,由折叠的性质可得∠GEF=∠FEC=62°,再根据平角的定义进行求解即可得.
【详解】
∵四边形ABCD是矩形,
∴AD//BC,
∴∠FEC=∠1=62°,
∵将一张矩形纸片ABCD沿 EF折叠后,点C落在AB边上的点 G 处,
∴∠GEF=∠FEC=62°,
∴∠BEG=180°-∠GEF-∠FEC=56°,
故答案为56°.
本题考查了矩形的性质、折叠的性质,熟练掌握矩形的性质、折叠的性质是解题的关键.
23、-1
【解析】
连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到=4,然后去绝对值即可得到满足条件的k的值.
【详解】
解:连结OA,如图,
∵轴,
∴OC∥AB,
∴S△OAB=S△ABC=4,
而S△OAB=,
∴=4,
∵k<0,
∴k=-1.
故答案为:-1.
本题考查了反比例函数的比例系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
二、解答题(本大题共3个小题,共30分)
24、证明:因为DE,DF是△ABC的中位线
所以DE∥AB,DF∥AC …………. 2分
所以四边形AEDF是平行四边形 ………….… 5分
又因为∠BAC=90°
所以平行四边形AEDF是矩形……………………分
所以EF=AD …………………………….….………10分
【解析】略
25、m=﹣1.
【解析】
利用待定系数法即可解决问题;
【详解】
解:设一次函数的解析式为y=kx+b,
则有,
解得,
∴一次函数的解析式为y=2x﹣3,
当x=﹣1时,m=﹣1.
本题考查一次函数图象上的点的特征,解题的关键是熟练掌握待定系数法解决问题,属于中考常考题型.
26、(1);(2);(3).
【解析】
(1)求出点C坐标,由待定系数法可得直线的函数表达式;
(2)方程组的解即为交点C横纵坐标的值;
(3)由题意可知当,,根据直线的表达式求出即可.
【详解】
解:(1)当时,,解得,
即点坐标为;
由与直线交于点,直线经过点,得
,
解得,
直线的函数表达式为;
(2)方程组的解即为交点C横纵坐标的值, 点坐标为,所以方程组解为;
(3)由题意可知当,,
所以.
本题考查了一次函数的解析式及图像,熟练掌握待定系数法,将题目与图像相结合是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
组别
身高(cm)
A
x<150
B
150≤x<155
C
155≤x<160
D
160≤x<165
E
x≥165
x
…
﹣1
1
2
…
y
…
m
﹣1
1
…
2024-2025学年黑龙江省大庆中学数学九年级第一学期开学质量跟踪监视试题【含答案】: 这是一份2024-2025学年黑龙江省大庆中学数学九年级第一学期开学质量跟踪监视试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年福建省福州市三牧中学数学九年级第一学期开学质量跟踪监视试题【含答案】: 这是一份2024-2025学年福建省福州市三牧中学数学九年级第一学期开学质量跟踪监视试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
福建省泉港一中学、城东中学2023-2024学年九年级数学第一学期期末检测模拟试题含答案: 这是一份福建省泉港一中学、城东中学2023-2024学年九年级数学第一学期期末检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,P关于原点对称的点的坐标是等内容,欢迎下载使用。