2024年北京大附中数学九上开学学业质量监测试题【含答案】
展开这是一份2024年北京大附中数学九上开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列调查中,最适合采用全面调查(普查)方式的是( )
A.对无锡市空气质量情况的调查B.对某校七年级()班学生视力情况的调查
C.对某批次手机屏使用寿命的调查D.对全国中学生每天体育锻炼所用时间的调查
2、(4分)下列各组数中,不能构成直角三角形的是( )
A.B.C.D.
3、(4分)下列多项式中,能用完全平方公式分解因式的是( )
A.x2﹣x+1B.1﹣2xy+x2y2C.m2﹣2m﹣1D.
4、(4分)正方形面积为,则对角线的长为( )
A.6B.C.9D.
5、(4分)数据60,70,40,30这四个数的平均数是( )
A.40B.50C.60D.70
6、(4分)如图,四边形ABCD是正方形,AB=1,点F是对角线AC延长线上一点,以BC、CF为邻边作菱形BEFC,连接DE,则DE的长是( ).
A.B.C.D.2
7、(4分)如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有( )
A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<0
8、(4分)下列图形中,既是轴对称又是中心对称图形的是( )
A.菱形B.等边三角形C.平行四边形D.直角三角形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)计算:=_______.
10、(4分)如图,P是反比例函数图象上的一点,轴于A,点B,C在y轴上,四边形PABC是平行四边形,则▱PABC的面积是______.
11、(4分)王玲和李凯进行投球比赛,每人连投12次,投中一次记2分,投空一次记1分,王玲先投,投得16分,李凯要想超过王玲,应至少投中________次.
12、(4分)计算: _____________.
13、(4分)若以二元一次方程的解为坐标的点(x,y) 都在直线上,则常数b=_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,BD是矩形ABCD的一条对角线.
(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法);
(2)求证:DE=BF.
15、(8分)学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如下表:
(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;
(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们20%、10%、30%和40%的权重,请分别计算两名选手的最终成绩,从他们的这一成绩看,应选派谁.
16、(8分)如图1,四边形ABCD是正方形,AB=4,点G在BC边上,BG=3,DE⊥AG于点E,BF⊥AG于点F.
(1)求BF和DE的长;
(2)如图2,连接DF、CE,探究并证明线段DF与CE的数量关系与位置关系.
17、(10分)如图,直线的解析表达式为:y=-3x+3,且与x轴交于点D,直线经过点A,B,直线,交于点C.
(1)求点D的坐标;
(2)求直线的解析表达式;
(3)求△ADC的面积;
(4)在直线上存在异于点C的另一点P,使得△ADP的面积是△ADC面积的2倍,请直接写出点P的坐标.
18、(10分)当为何值时,分式的值比分式的值大2?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知是一次函数,则__________.
20、(4分)某种手机每部售价为元,如果每月售价的平均降低率为,那么两个月后,这种手机每部的售价是____________元.(用含,的代数式表示)
21、(4分)内角和等于外角和2倍的多边形是__________边形.
22、(4分)要使在实数范围内有意义,a 应当满足的条件是_____.
23、(4分)一元二次方程x2﹣x=0的根是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)阅读理解:
我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.
阅读下列材料,完成习题:
如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦(sine),记作sinA,即sinA=
例如:a=3,c=7,则sinA=
问题:在Rt△ABC中,∠C=90°
(1)如图2,BC=5,AB=8,求sinA的值.
(2)如图3,当∠A=45°时,求sinB的值.
(3)AC=2,sinB=,求BC的长度.
25、(10分)如图1,在中,,,,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作,交AB于点D,连接PQ,点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.
直接用含t的代数式分别表示:______,______;
是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由.
如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.
26、(12分).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
A. 对无锡市空气质量情况的调查用抽样调查,错误;
B、对某校七年级()班学生视力情况的调查用全面调查,正确;
C、对某批次手机屏使用寿命的调查用抽样调查,错误;
D、对全国中学生每天体育锻炼所用时间的调查用抽样调查,错误;
故选B.
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
2、C
【解析】
根据勾股定理的逆定理逐项计算即可.
【详解】
A. ∵32+42=52,∴能构成直角三角形;
B. ∵12+22=,∴能构成直角三角形;
C. ∵,∴不能构成直角三角形;
D. ∵12+=22,∴ 能构成直角三角形;
故选C.
本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.
3、B
【解析】
利用完全平方公式的结构特征判断即可.
【详解】
解:选项中的4个多项式中,能用完全平方公式分解因式的是1-2xy+x2y2=(1-xy)2,
故选B.
此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.
4、B
【解析】
根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.
【详解】
设对角线长是x.则有
x2=36,
解得:x=6.
故选B.
本题考查了正方形的性质,注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.
5、B
【解析】
用四个数的和除以4即可.
【详解】
(60+70+40+30)÷4=200÷4=50.
故选B.
本题重点考查了算术平均数的计算,希望同学们要牢记公式,并能够灵活运用.
数据x1、x2、……、xn的算术平均数:=(x1+x2+……+xn).
6、C
【解析】
延长DC交EF于G,则CG⊥EF,由正方形和菱形的性质得出∠FCG=∠ACD=45°,CD=BC=CF=EF=1,得出△CFG是等腰直角三角形,得出CG=FG,求出DG=CD+CG=1,GE=EF﹣FG=1.在Rt△DEG中,由勾股定理即可得出答案.
【详解】
延长DC交EF于G,如图所示,则CG⊥EF,∴∠CGF=∠CGE=90°.
∵四边形ABCD是正方形,四边形BEFC是菱形,∴∠FCG=∠ACD=45°,CD=BC=CF=EF=1,∴△CFG是等腰直角三角形,∴CG=FGCF,∴DG=CD+CG=1,GE=EF﹣FG=1.在Rt△DEG中,由勾股定理得:DE.
故选C.
本题考查了正方形的性质、菱形的性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握正方形和菱形的性质,证明△CFG是等腰直角三角形是解题的关键.
7、D
【解析】
∵A,B是不同象限的点,而正比例函数的图象要不在一、三象限,要不在二、四象限,
∴由点A与点B的横纵坐标可以知:
点A与点B在一、三象限时:横纵坐标的符号应一致,显然不可能;
点A与点B在二、四象限:点B在二象限得n<0,点A在四象限得m<0.
故选D.
8、A
【解析】
根据轴对称图形和中心对称图形对各选项分析判断即可得解.
【详解】
A. 菱形既是轴对称又是中心对称图形,故本选项正确;
B. 等边三角形是轴对称,不是中心对称图形,故本选项错误;
C. 平行四边形不是轴对称,是中心对称图形,故本选项错误;
D. 直角三角形不是轴对称(等腰直角三角形是),也不是中心对称图形,故本选项错误.
故选A.
本题主要考查图形的中心对称和图形的轴对称概念,熟悉掌握概念是关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3
【解析】
先把化成,然后再合并同类二次根式即可得解.
【详解】
原式=2.
故答案为
本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式.
10、6
【解析】
作PD⊥BC,所以,设P(x,y). 由,得平行四边形面积=BC•PD=xy.
【详解】
作PD⊥BC,
所以,设P(x,y).
由,
得平行四边形面积=BC•PD=xy=6.
故答案为:6
本题考核知识点:反比例函数意义. 解题关键点:熟记反比例函数的意义.
11、1
【解析】
根据题意,可以列出相应的不等式,本题得以解决,注意问题中是李凯超过王玲.
【详解】
解:设李凯投中x个球,总分大于16分,则
2x+(12-x)×1>16,
解得,x>4,
∴李凯要想超过王玲,应至少投中1次,
故答案为:1.
本题考查一元一次不等式的应用,解答本题的关键是明确题意,列出相应的不等式,利用不等式的性质解答.
12、1
【解析】
根据开平方运算的法则计算即可.
【详解】
1.
故答案为:1.
本题考查了实数的运算-开方运算,比较简单,注意符号的变化.
13、1.
【解析】
直线解析式乘以1后和方程联立解答即可.
【详解】
因为以二元一次方程x+1y-b=0的解为坐标的点(x,y)都在直线上,
直线解析式乘以1得1y=-x+1b-1,变形为:x+1y-1b+1=0
所以-b=-1b+1,
解得:b=1,
故答案为1.
此题考查一次函数与二元一次方程问题,关键是直线解析式乘以1后和方程联立解答.
三、解答题(本大题共5个小题,共48分)
14、(1)作图见解析;(2)证明见解析;
【解析】
(1)分别以B、D为圆心,以大于BD的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;
(2)利用垂直平分线证得△DEO≌△BFO即可证得结论.
【详解】
解:(1)如图:
(2)∵四边形ABCD为矩形,
∴AD∥BC,
∴∠ADB=∠CBD,
∵EF垂直平分线段BD,
∴BO=DO,
在△DEO和三角形BFO中,
,
∴△DEO≌△BFO(ASA),
∴DE=BF.
考点:1.作图—基本作图;2.线段垂直平分线的性质;3.矩形的性质.
15、(1)乙的平均成绩是79.5(分),应选派甲;(2)甲的最终成绩:79.5(分),
乙的最终成绩:80.4(分),应选派乙.
【解析】
(1)求出乙的平均成绩,与甲作比较即可;
(2)分别计算甲乙的加权平均数,得到最终成绩,再进行比较即可.
【详解】
解:(1)乙的平均成绩:(73+80+82+83)=79.5(分),
∵甲的平均成绩为80.25,
∴应选派甲;
(2)甲的最终成绩:85×20%+78×10%+85×30%+73×40%=79.5(分)
乙的最终成绩:73×20%+80×10%+82×30%+83×40%=80.4(分)
∴应选派乙.
本题考查了算术平均数和加权平均数,熟练掌握求算术平均数和加权平均数的方法是解题的关键.
16、(1);(2)DF=CE,DF⊥CE.理由见解析;
【解析】
分析:(1)如图1,先利用勾股定理计算出AG==5,再利用面积法和勾股定理计算出 然后证明△ABF≌△DAE,得到DE=AF=;
(2)作CH⊥DE于H,如图2,先利用△ABF≌△DAE,得到则与(1)的证明方法一样可得△CDH≌△DAE,则于是可判断EH=EF,接着证明△DEF≌△CHE,所以DF=CE,∠EDF=∠HCE,然后利用三角形内角和得到从而判断DF⊥CE.
详解:(1)如图1,
∵四边形ABCD是正方形,
∴,
∵DE⊥AG,BF⊥AG,
∴
在Rt△ABG中,AG==5,
∵
∴
∴AF===,
∵
∴∠ABF=∠DAE,
在△ABF和△DAE中
∴△ABF≌△DAE,
∴DE=AF=;
(2)DF=CE,DF⊥CE.理由如下:
作CH⊥DE于H,如图2,
∵△ABF≌△DAE,
∴
∴
与(1)的证明方法一样可得△CDH≌△DAE,
∴
∴
∴EH=EF,
在△DEF和△CHE中
∴△DEF≌△CHE,
∴DF=CE,∠EDF=∠HCE,
∵∠1=∠2,
∴
∴DF⊥CE.
点睛:考查正方形的性质, 全等三角形的判定与性质,属于综合题,难度较大.对学生综合能力要求较高.
17、(1)D(1,0);(2);(3);(4)P(6,3).
【解析】
(1)已知l1的解析式,令y=0求出x的值即可;
(2)设l2的解析式为y=kx+b,由图联立方程组求出k,b的值;
(3)联立方程组,求出交点C的坐标,继而可求出S△ADC;
(4)△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是点C到AD的距离.
【详解】
解:(1)由y=﹣3x+3,令y=0,得﹣3x+3=0,
∴x=1,
∴D(1,0);
(2)设直线l2的解析表达式为y=kx+b,
由图象知:x=4,y=0;x=3,y=-,代入表达式y=kx+b,
∴ ,
∴,
∴直线l2的解析表达式为;
(3)由,
解得,
∴C(2,﹣3),
∵AD=3,
∴S△ADC=×3×|﹣3|=;
(4)△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是点C到直线AD的距离,即C纵坐标的绝对值=|﹣3|=3,
则P到AD距离=3,
∴P纵坐标的绝对值=3,点P不是点C,
∴点P纵坐标是3,
∵y=1.5x﹣6,y=3,
∴1.5x﹣6=3
x=6,
∴ P(6,3).
本题考查的是一次函数的性质,三角形面积的计算等有关知识,难度中等.
18、当时,分式的值比分式的值大2.
【解析】
根据题意列出方程,求出方程的解即可得到x的值.
【详解】
解:根据题意得:
方程两边同乘以约去分母,得:
化简整理,得:
解得
经检验:是原方程的根,
所以,原方程的根是:
所以,当时,分式的值比分式的值大2.
此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.
【详解】
解;由y=(m-1)xm2−8+m+1是一次函数,得
,
解得m=-1,m=1(不符合题意的要舍去).
故答案为:-1.
本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
20、(1-x)2
【解析】
根据题意即可列出代数式.
【详解】
∵某种手机每部售价为元,如果每月售价的平均降低率为,
则一个月后的售价为(1-x)
故两个月后的售价为(1-x)2
此题主要考查列代数式,解题的关键是根据题意找到数量关系.
21、六
【解析】
设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.
【详解】
解:设多边形有n条边,由题意得:
180(n-2)=360×2,
解得:n=6,
故答案为:六.
本题考查多边形的内角和和外角和,关键是掌握内角和为180°(n-2).
22、a⩽3.
【解析】
根据二次根式有意义的条件列出关于a的不等式,求出a的取值范围即可.
【详解】
∵在实数范围内有意义,
∴3−a⩾0,
解得a⩽3.
故答案为:a⩽3.
此题考查二次根式有意义的条件,解题关键在于掌握其有意义的条件.
23、x1=0,x2=1
【解析】
方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.
【详解】
方程变形得:x(x﹣1)=0,
可得x=0或x﹣1=0,
解得:x1=0,x2=1.
故答案为x1=0,x2=1.
此题考查了解一元二次方程﹣因式分解法,熟练掌握方程的解法是解本题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1);(2);(3)2.
【解析】
分析:(1)根据sinA=直接写结论即可;
(2)设AC=x,则BC=x,根据勾股定理得AB=,然后根据sinA=计算;
(3)先根据sinB=求出AB的值,再利用勾股定理求BC的值即可.
详解:(1)sinA=;
(2)在Rt△ABC中,∠A=45°,
设AC=x,则BC=x,AB=,
则sinB=;
(3)sinB=,则AB=4,
由勾股定理得:BC2=AB2-AC2 =16-12=4,
∴BC=2.
点睛:本题考查了信息迁移,勾股定理,正确理解在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦是解答本题的关键.
25、(1),;(2)详见解析;(3)2
【解析】
由根据路程等于速度乘以时间可得,,,则,根据,,可得:,根据相似三角形的判定可得:∽,再根据相似三角形的性质可得:
,即,从而解得:,
(2)根据,当时,可判定四边形PDBQ为平行四边形,根据平行四边形的性质可得:,解得:,
(3)根据题意可得:,当时,点的坐标为,当时,点的坐标为,
设直线的解析式为:,则,解得:,因此直线的解析式为:,再根据题意得:点P的坐标为,点Q的坐标为,因此在运动过程中PQ的中点M的坐标为,当时,,因此点M在直线上,作轴于N,则,,由勾股定理得,,
因此线段PQ中点M所经过的路径长为.
【详解】
由题意得,,,
则,
,,
,
∽,
,即,
解得:,
故答案为:,,
存在,
,
当时,四边形PDBQ为平行四边形,
,
解得:,
则当时,四边形PDBQ为平行四边形,
以点C为原点,以AC所在的直线为x轴,建立如图2所示的平面直角坐标系,
由题意得:,
当时,点的坐标为,
当时,点的坐标为,
设直线的解析式为:,
则,
解得:,
直线的解析式为:,
由题意得:点P的坐标为,点Q的坐标为,
在运动过程中PQ的中点M的坐标为,
当时,,
点M在直线上,
作轴于N,
则,,
由勾股定理得,,
线段PQ中点M所经过的路径长为.
本题主要考查几何动点问题,解决本题的关键是要准确找出动点运动路线,动点运动长度与运动时间的关系,并结合几何图形中的等量关系列方程进行解答.
26、
【解析】
先分别根据平方差公式和完全平方公式进行计算,再合并即可.
【详解】
原式=25-10-2+4-3
=10+4
此题考查平方差公式和完全平方公式,掌握运算法则是解题关键
题号
一
二
三
四
五
总分
得分
选手
表达能力
阅读理解
综合素质
汉字听写
甲
85
78
85
73
乙
73
80
82
83
相关试卷
这是一份2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山东省东明县数学九上开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省洪泽县数学九上开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。