2024年安徽省亳州市利辛县数学九上开学学业水平测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图(图在第二页)所示是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是
A.13B.26C.47D.94
2、(4分)4名选手在相同条件下各射靶10次,统计结果如下表,表现较好且更稳定的是( )
A.甲B.乙C.丙D.丁
3、(4分)若关于x的不等式组的解集为x<2,则a的取值范围是( )
A.a≥﹣2B.a>﹣2C.a≤﹣2D.a<﹣2
4、(4分)李雷同学周末晨练,他从家里出发,跑步到公园,然后在公园玩一会儿篮球,再走路回家,那么,他与自己家的距离y(米)与时间x(分钟)之间的关系的大致图象是( )
A.B.C.D.
5、(4分)如果,下列不等式中错误的是( )
A.B.C.D.
6、(4分)在平面直角坐标系中,点M(2019,–2019)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
7、(4分)一次函数y=﹣2x+3的图象不经过的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
8、(4分)某农机厂一月份生产零件50万个,第一季度共生产零件182万个.设该厂二、三月份平均每月的增长率为x,那么x满足的方程是( )
A.50(1+x)²=182B.50+50(1+x)+50(1+x)²=182
C.50(1+2x)=182D.50+50(1+x)+50(1+2x)²=182
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图所示,AB=BC=CD=DE=EF=FG,∠1=125°,则∠A=_____度.
10、(4分)若与最简二次根式能合并成一项,则a=______.
11、(4分)化简:=__.
12、(4分)若关于x的分式方程当的解为正数,那么字母a的取值范围是_____.
13、(4分)一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b<0的解集是___.
三、解答题(本大题共5个小题,共48分)
14、(12分)矩形ABCD中,点E、F分别在边CD、AB上,且DE=BF,∠ECA=∠FCA.
(1)求证:四边形AFCE是菱形;
(2)若AB=8,BC=4,求菱形AFCE的面积.
15、(8分)如图,在矩形ABCD中,,.将矩形ABCD沿过点C的直线折叠,使点B落在对角线AC上的点E处,折痕交AB于点F.
(1)求线段AC的长.
(2)求线段EF的长.
(3)点G在线段CF上,在边CD上存在点H,使以E、F、G、H为顶点的四边形是平行四边形,请画出,并直接写出线段DH的长.
16、(8分)如图,在平面直角坐标系中,位于第二象限的点在反比例函数的图像上,点与点关于原点对称,直线经过点,且与反比例函数的图像交于点.
(1)当点的横坐标是-2,点坐标是时,分别求出的函数表达式;
(2)若点的横坐标是点的横坐标的4倍,且的面积是16,求的值.
17、(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).
(1)画出△ABC关于y轴对称的△A1B1C1;
(1)将△ABC绕着点B顺时针旋转90°后得到△A1BC1,请在图中画出△A1BC1.
18、(10分)为了倡导“节约用水,从我做起”,南沙区政府决定对区直属机关300户家庭的用水情况作一次调查,区政府调查小组随机抽查了其中50户家庭一年的月平均用水量(单位:吨),调查中发现每户用水量均在10﹣14吨/月范围,并将调查结果制成了如图所示的条形统计图.
(1)请将条形统计图补充完整;
(2)这50户家庭月用水量的平均数是 ,众数是 ,中位数是 ;
(3)根据样本数据,估计南沙区直属机关300户家庭中月平均用水量不超过12吨的约有多少户?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如下表:
则这10名学生周末利用网络进行学均时间是 小时.
20、(4分)如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为_____.
21、(4分)一元二次方程x2-2x-k=0有两个相等的实数根,则k=________。
22、(4分)已知为分式方程,有增根,则_____.
23、(4分) “m2是非负数”,用不等式表示为___________.
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组:,并在数轴上表示出它的解集。
25、(10分)解不等式组:.并把它的解集在数轴上表示出来
26、(12分)甲、乙两车间同时开始加工—批服装.从开始加工到加工完这批服装甲车间工作了小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为(件).甲车间加工的时间为(时),与之间的函数图象如图所示.
(1)甲车间每小时加工服装件数为 件;这批服装的总件数为 件;
(2)求乙车间维修设备后,乙车间加工服装数量与之间的函数关系式;
(3)求甲、乙两车间共同加工完1140件服装时甲车间所用的时间.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
解:如图
根据勾股定理的几何意义,可得A、B的面积和为,C、D的面积和为,,于是,即故选C.
2、B
【解析】
先比较平均数,乙、丁的平均成绩好且相等,再比较方差即可解答.
【详解】
解:∵乙、丁的平均成绩大于甲、丙,且乙的方差小于丁的方差,
∴表现较好且更稳定的是乙,
故选:B.
本题考查方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
3、C
【解析】
分别求出每个不等式的解集,根据不等式组的解集为x<2可得关于a的不等式,解之可得.
【详解】
解不等式,得:x<2,
解不等式<x,得:x<﹣a,
∵不等式组的解集为x<2,
∴﹣a≥2,
解得:a≤﹣2,
故选:C.
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
4、B
【解析】
他跑步到离家较远的公园,打了一会儿篮球后慢步回家,去的时候速度快,用的时间少,然后在公园打篮球路程是不变的,回家慢步用的时间多.据此解答.
【详解】
根据以上分析可知能大致反映当天李雷同学离家的距离y与时间x的关系的是B.
故选:B.
本题考查了函数的图象,理解每阶段中,离家的距离与时间的关系是解答本题的关键.
5、B
【解析】
根据a<b<0,可得ab>0,a+b<0,>0,a-b<0,从而得出答案.
【详解】
A、ab>0,故本选项不符合题意;
B、>1,故本选项符合题意;
C、a+b<0,故本选项不符合题意;
D、a-b<0,故本选项不符合题意.
故选:B.
本题考查了不等式的性质,是基础知识比较简单.
6、D
【解析】
四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),再根据点M的坐标的符号,即可得出答案.
【详解】
解:∵M(2019,﹣2019),
∴点M所在的象限是第四象限.
故选D.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
7、C
【解析】
试题解析:∵k=-2<0,
∴一次函数经过二四象限;
∵b=3>0,
∴一次函数又经过第一象限,
∴一次函数y=-x+3的图象不经过第三象限,
故选C.
8、B
【解析】
设二、三月份平均每月的增长率为x,根据某农机厂一月份生产零件50万个,第一季度共生产1万个,可列出方程.
【详解】
解:设二、三月份平均每月的增长率为x,则二月份生产零件50(1+x)个,三月份生产零件50(1+x)2个,则得:
50+50(1+x)+50(1+x)2=1.
故选:B.
本题考查理解题意的能力,关键设出增长率,表示出每个月的生产量,以一季度的产量做为等量关系列出方程.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
设∠A=x.根据等腰三角形的性质和三角形的外角的性质,得∠CDB=∠CBD=2x,∠DEC=∠DCE=3x,∠DFE=∠EDF=4x,∠FCE=∠FEC=5x,则180°﹣5x=130°,即可求解.
【详解】
设∠A=x,
∵AB=BC=CD=DE=EF=FG,
∴根据等腰三角形的性质和三角形的外角的性质,得
∠CDB=∠CBD=2x,∠DEC=∠DCE=3x,∠DFE=∠EDF=4x,∠FGE=∠FEG=5x,
则180°﹣5x=125°,
解,得x=1°,
故答案为1.
本题考查了等腰三角形的性质和三角形的外角的性质的运用;发现并利用∠CBD是△ABC的外角是正确解答本题的关键.
10、2
【解析】
根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.
【详解】
解:=2,
由最简二次根式与能合并成一项,得
a-1=1.
解得a=2.
故答案为:2.
本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.
11、1
【解析】
利用同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减,即可得出答案.
【详解】
解:
=1.
故答案是:1.
考查了分式的加减法,熟练掌握运算法则是解本题的关键.
12、a>1且a≠3
【解析】
首先根据题意求解x的值,再根据题意可得分式方程的解大于0,注意分式方程的增根问题.
【详解】
解:去分母得:3x﹣a=x﹣1,
解得:x= ,
由分式方程的解为正数,得到>0,≠1,
解得:a>1且a≠3,
故答案为:a>1且a≠3
本题主要考查分式方程的解参数问题,这类题目特步要注意分式方程的增根问题.
13、x<−2.
【解析】
由图象可知kx+b=0的解为x=-2,所以kx+b<0的解集也可观察出来.
【详解】
从图象得知一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(−2,0),并且函数值y随x的增大而增大,
因而不等式kx+b<0的解集是x<−2.
故答案为:x<−2.
此题考查一次函数与一元一次不等式,解题关键在于结合函数图象进行解答.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)1.
【解析】
分析:(1)先证明四边形AFCE是平行四边形,再证明FA=FC,根据有一组邻边相等的平行四边形是菱形得出结论;
(2)设DE=x,则AE=EC=8-x,在Rt△ADE中,由勾股定理列方程求得x的值,再求菱形的面积即可.
详解:(1)∵四边形ABCD是矩形,
∴DC∥AB,DC=AB,
∵DE=BF,
∴EC=AF,
而EC∥AF,
∴四边形AFCE是平行四边形,
由DC∥AB可得∠ECA=∠FAC,
∵∠ECA=∠FCA,
∴∠FAC=∠FCA,
∴FA=FC,
∴平行四边形AFCE是菱形;
(2)解:设DE=x,则AE=EC=8-x,
在Rt△ADE中,由勾股定理得
42+x2=(8-x)2,
解得x=3,
∴菱形的边长EC=8-3=5,
∴菱形AFCE的面积为:4×5=1.
点睛:本题考查了矩形的性质、菱形的性质和判定、菱形的面积、勾股定理.此题难度不大,注意掌握数形结合思想的应用.
15、(1);(2);(3)见解析,.
【解析】
(1)根据勾股定理计算AC的长;
(2)设EF=x,在Rt△AEF中,由勾股定理列方程可解答;
(3)先正确画图,根据折叠的性质和平行线的性质证明CH=GH可解答.
【详解】
解:(1)∵四边形ABCD矩形,.
在中,;
(2)设EF的长为x.
由折叠,得,,,
,,,
在中,,即,
解得..
(3)如图,∵四边形EFGH是平行四边形,
∴EF∥GH,EF=GH=3,
∴∠EFC=∠CGH,
∵AB∥CD,
∴∠BFC=∠DCF,
由折叠得:∠BFC=∠EFC,
∴∠CGH=∠DCF,
∴CH=GH=3,
∴DH=CD-CH=8-3=1.
故答案为:(1);(2);(3)见解析,.
本题是四边形的综合题目,考查了矩形的性质、折叠的性质、平行四边形的性质、平行线的性质、勾股定理等知识;熟练掌握矩形的性质和折叠的性质,由勾股定理得出方程是解决问题的关键.
16、(1),;(2).
【解析】
(1)先将点C坐标代入,利用待定系数法可求得y1的解析式,继而求得点A的坐标,点B坐标,根据B、C坐标利用待定系数法即可求得y2的解析式;
(2)分别过点作轴于点,轴于点,连接,由三角形中线的性质可得,再根据反比例函数的比例系数的几何意义可得,从而可得,设点的横坐标为,则点坐标表示为、,继而根据梯形的面积公式列式进行计算即可.
【详解】
(1)由已知,点在的图象上,
∴,∴,
∵点 的横坐标为,∴点为,
∵点与点关于原点对称,
∴为,
把,代入得,
解得:,
∴;
(2)分别过点作轴于点,轴于点,连接,
∵为中点 ,
∴
∵点在双曲线上,
∴
∴ ,
设点的横坐标为,
则点坐标表示为、,
∴,
解得 .
本题考查了反比例函数与一次函数综合,涉及了待定系数法,反比例函数k的几何意义,熟练掌握和灵活运用相关知识是解题的关键.
17、 (1)见解析.(1)见解析.
【解析】
(1)利用点平移的坐标特征写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;
(1)利用网格特点和旋转的性质,画出点A、C的对应点A1,C1,即可得到△A1BC1.
【详解】
解:(1)如图所示:△A1B1C1即为所求;
(1)如图所示:△A1BC1即为所求.
本题考查了作图-旋转变换,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
18、 (1)补图见解析;(2)11.6,11,11;()210户.
【解析】
试题分析:(1)利用总户数减去其他的即可得出答案,再补全即可;
(2)利用众数,中位数以及平均数的公式进行计算即可;
(3)根据样本中不超过12吨的户数,再估计300户家庭中月平均用水量不超过12吨的户数即可.
解:(1)根据条形图可得出:
平均用水11吨的用户为:50﹣10﹣5﹣10﹣5=20(户),
如图所示:
(2)这50 个样本数据的平均数是 11.6,众数是11,中位数是11;
故答案为;11.6,11,11;
(3)样本中不超过12吨的有10+20+5=35(户),
∴广州市直机关300户家庭中月平均用水量不超过12吨的约有:300×=210(户).
点评:本题考查了读统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了众数、中位数的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2.5小时
【解析】
平均数的计算方法是求出所有数据的和,然后除以数据的总个数.本题利用加权平均数的公式即可求解.
【详解】
解:由题意,可得这10名学生周末利用网络进行学均时间是:
(4×2+3×4+2×2+1×1+0×1)=2.5(小时).
故答案为2.5
20、45°.
【解析】
首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,可得出∠2=∠3,∠1=∠4,故∠1+∠2=∠3+∠4,由此即可得出结论.
【详解】
解:过点B作BD∥l,
∵直线l∥m,
∴BD∥l∥m,
∴∠4=∠1,∠2=∠3,
∴∠1+∠2=∠3+∠4=∠ABC,
∵∠ABC=45°,
∴∠1+∠2=45°.
故答案为:45°.
此题考查了平行线的性质.解题时注意辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.
21、-1
【解析】
根据已知方程有两个相等的实数根,得出b2-4ac=0,建立关于k的方程,解方程求出k的值即可.
【详解】
∵ 一元二次方程x2-2x-k=0有两个相等的实数根,
∴b2-4ac=0,即4+4k=0
解之:k=-1
故答案为:-1
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式:△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
22、
【解析】
去分母得,根据有增根即可求出k的值.
【详解】
去分母得,
,
当时,
为增根,
故答案为:1.
本题考查了分式方程的问题,掌握解分式方程的方法是解题的关键.
23、≥1
【解析】
根据非负数即“≥1”可得答案.
【详解】
解:“m2是非负数”,用不等式表示为m2≥1,
故答案为:m2≥1.
本题主要主要考查由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的不等关系.
二、解答题(本大题共3个小题,共30分)
24、-2<x≤3,数轴上表示见解析.
【解析】
根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.
【详解】
解: ,
解①得,x>-2,
解②得,x≤3,
则不等式组的解集为-2<x≤3,
在数轴上表示为:
.
故答案为:-2<x≤3,数轴上表示见解析.
本题考查一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.
25、1<x<4,数轴表示见解析.
【解析】
分别求出各不等式的解集,再求出其公共解集即可.
【详解】
,
解不等式①得:x>1;
解不等式②得:x<4,
所以不等式组的解集为:1<x<4,
解集在数轴上表示为:
此题主要考查了解一元一次不等式组,以及在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
26、(1)90,1300;(2);(3)1.
【解析】
(1)由图像可得点可得答案;
(2)由图可知乙车间每小时加工服装:140÷2=70件,求解维修设备后坐标为,再把(4,140)、(9,490)代入乙车间的函数关系式y=kx+b,从而可得答案;
(3)根据加工的服装总件数=工作效率×工作时间,求出甲车间加工服装数量y与x之间的函数关系式,将甲、乙两关系式相加令其等于,求出x值,可得答案.
【详解】
解:(1)由图像可得点 可得甲小时加工了件服装,
所以:甲车间每小时加工服装件数为件,
由图像可得点,可得乙加工的总数为件,
所以这批服装共有件.
故答案为:
(2)由图可知乙车间每小时加工服装:140÷2=70件,
所以:乙车间共需要:490÷70=7小时,
维修设备时间:9-7=2小时,
∴ 维修设备后坐标为,
设乙车间的函数关系式为:y=kx+b,
代入点(4,140)、(9,490),
得:
解得,
所以:y=70x﹣140;
(3)设甲车间代入点(9,110)得:
则9m=110,
解得:m=90,
所以:
由y + y1= 1140得:
70x﹣140+90x=1140
解得:x=1
答:甲、乙两车间共同加工完1140件服装时甲车间所用时间是1小时.
本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系,找出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据数量关系,找出甲车间加工服装数量y与x之间的函数关系式.
题号
一
二
三
四
五
总分
得分
批阅人
选手
甲
乙
丙
丁
平均环数
9
9.5
9
9.5
方差
4.5
4
4
5.4
时间(单位:小时)
4
3
2
1
0
人数
2
4
2
1
1
2024年安徽省亳州市利辛县数学九上开学学业质量监测试题【含答案】: 这是一份2024年安徽省亳州市利辛县数学九上开学学业质量监测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年安徽省亳州市黉高级中学九上数学开学监测试题【含答案】: 这是一份2024年安徽省亳州市黉高级中学九上数学开学监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年安徽省亳州市利辛县宇航中学七年级(上)开学数学试卷(含答案): 这是一份2024-2025学年安徽省亳州市利辛县宇航中学七年级(上)开学数学试卷(含答案),共6页。试卷主要包含了填空题,选择题,判断题,解答题等内容,欢迎下载使用。