终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024-2025学年山西省大同市第六中学数学九上开学学业水平测试模拟试题【含答案】

    立即下载
    加入资料篮
    2024-2025学年山西省大同市第六中学数学九上开学学业水平测试模拟试题【含答案】第1页
    2024-2025学年山西省大同市第六中学数学九上开学学业水平测试模拟试题【含答案】第2页
    2024-2025学年山西省大同市第六中学数学九上开学学业水平测试模拟试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年山西省大同市第六中学数学九上开学学业水平测试模拟试题【含答案】

    展开

    这是一份2024-2025学年山西省大同市第六中学数学九上开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列命题中,正确的是( )
    A.在三角形中,到三角形三边距离相等的点是三条边垂直平分线的交点
    B.平行四边形是轴对称图形
    C.三角形的中位线将三角形分成面积相等的两个部分
    D.一组对边平行,一组对角相等的四边形是平行四边形
    2、(4分)若分式的值为0,则( )
    A.B.C.D.
    3、(4分)下列各式中属于最简二次根式的是( ).
    A.B.C.D.
    4、(4分)如图所示,一场台风过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2,则树高为( )米.
    A.1+B.1+C.2-1D.3
    5、(4分)某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是( )
    A.1.95元B.2.15元C.2.25元D.2.75元
    6、(4分)如图,一次函数的图象经过、两点,则不等式的解集是( )
    A.B.C.D.
    7、(4分)下面哪个点在函数y=2x-1的图象上( )
    A.(-2.5,-4)B.(1,3)C.(2.5,4)D.(0,1)
    8、(4分)下列说法正确的是( )
    A.是二项方程B.是二元二次方程
    C.是分式方程D.是无理方程
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)商店购进一批文具盒,进价每个4元,零售价每个6元,为促销决定打折销售,但利润率仍然不低于20%,那么该文具盒实际价格最多可打___________折销售
    10、(4分)一次函数y=-4x-5的图象不经过第_____________象限.
    11、(4分)甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1000米,甲超出乙150米时,甲停下来等候乙,甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息,在跑步的整个过程中,甲、乙两人的距离y(米)与乙出发的时间x(秒)之间的关系如图所示,则甲到终点时,乙距离终点还有_____米.
    12、(4分)已知点是直线上的一个动点,若点到两坐标轴的距离相等,则点的坐标是__________.
    13、(4分)若直角三角形斜边上的高和中线分别是 5 cm 和 6 cm,则面积为________,
    三、解答题(本大题共5个小题,共48分)
    14、(12分)先化简再求值:,再从0,﹣1,2中选一个数作为a的值代入求值.
    15、(8分)将一矩形纸片放在直角坐标系中,为原点,点在轴上,点在轴上,.
    (1)如图1,在上取一点,将沿折叠,使点落在边上的点处,求直线的解析式;
    (2)如图2,在边上选取适当的点,将沿折叠,使点落在边上的点处,过作于点,交于点,连接,判断四边形的形状,并说明理由;
    (3)、在(2)的条件下,若点坐标,点在直线上,问坐标轴上是否存在点,使以为顶点的四边形是平行四边形,若存在,请直接写出点坐标;若不存在,请说明理由.
    16、(8分)如图1,矩形OABC摆放在平面直角坐标系中,点A在x轴上,点C在y轴上,OA=3,OC=2,过点A的直线交矩形OABC的边BC于点P,且点P不与点B、C重合,过点P作∠CPD=∠APB,PD交x轴于点D,交y轴于点E.
    (1)若△APD为等腰直角三角形.
    ①求直线AP的函数解析式;
    ②在x轴上另有一点G的坐标为(2,0),请在直线AP和y轴上分别找一点M、N,使△GMN的周长最小,并求出此时点N的坐标和△GMN周长的最小值.
    (2)如图2,过点E作EF∥AP交x轴于点F,若以A、P、E、F为顶点的四边形是平行四边形,求直线PE的解析式.

    17、(10分) “雁门清高”苦荞茶,是大同左云的特产,享誉全国,某经销商计划购进甲、乙两种包装的苦荞茶500盒进行销售,这两种茶的进价、售价如下表所示:
    设该经销离购进甲种包装的苦荞茶x盒,总进价为y元。
    (1)求y与x的函数关系式
    (2)为满足市场需求,乙种包装苦荞茶的数量不大于甲种包装数量的4倍,请你求出获利最大的进货方案,并求出最大利润。
    18、(10分)为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如图的折线图,请根据图象回答下列问题;
    (1)当用电量是180千瓦时时,电费是__________元;
    (2)第二档的用电量范围是__________;
    (3)“基本电价”是__________元/千瓦时;
    (4)小明家8月份的电费是1.5元,这个月他家用电多少千瓦时?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知 ,,则=______。
    20、(4分)如图,在△ABC中,AB=5,AC=6,BC=7,点D、E、F分别是边AB、AC、BC的中点,连接DE、DF、EF,则△DEF的周长是_____________。
    21、(4分)如图,在Rt△ABC中,∠B=90°,AB=,BC=3,D、E分别是AB、AC的中点,延长BC至点F,使CF=BC,连接DF、EF,则EF的长为____.
    22、(4分)如图,已知矩形的边将矩形的一部分沿折叠,使点与点重合,点的对应点为,则的长是______将绕看点顺时针旋转角度得到直线分别与射线,射线交于点当时,的长是___________.
    23、(4分)如图,在矩形ABCD中,对角线AC的垂直平分线分别交AB,CD于点E,F,连接AF,CE,如果∠BCE=26°,则∠CAF=_____
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在平面直角坐标系中,已知点A(3,4),B(﹣3,0).
    (1)只用直尺(没有刻度)和圆规按下列要求作图.
    (要求:保留作图痕迹,不必写出作法)
    Ⅰ)AC⊥y轴,垂足为C;
    Ⅱ)连结AO,AB,设边AB,CO交点E.
    (2)在(1)作出图形后,直接判断△AOE与△BOE的面积大小关系.
    25、(10分)如图,在的正方形网格中,横、纵坐标均为整数的点叫格点.己知,,均在格点上.
    (1)请建立平面直角坐标系,并直接写出点坐标;
    (2)直接写出的长为 ;
    (3)在图中仅用无刻度的直尺找出的中点:
    第一步:找一个格点;
    第二步:连接,交于点,即为的中点;
    请按步骤完成作图,并写出点的坐标.
    26、(12分)如图,左右两幅图案关于y轴对称,右图案中的左右眼睛的坐标分别是(2,3),(4,3),嘴角左右端点的坐标分别是(2,1),(4,1).
    (1)试确定左图案中的左右眼睛和嘴角左右端点的坐标;
    (2)从对称的角度来考虑,说一说你是怎样得到的;
    (3)直接写出右图案中的嘴角左右端点关于原点的对称点的坐标.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    由三角形的内心和外心性质得出选项A不正确;由平行四边形的性质得出选项B不正确;由三角形中位线定理得出选项C不正确;由平行四边形的判定得出选项D正确;即可得出结论.
    【详解】
    解:A.在三角形中,到三角形三边距离相等的点是三条边垂直平分线的交点;不正确;
    B.平行四边形是轴对称图形;不正确;
    C.三角形的中位线将三角形分成面积相等的两个部分;不正确;
    D.一组对边平行,一组对角相等的四边形是平行四边形;正确;
    故选:D.
    本题考查了命题与定理、三角形的内心与外心、平行四边形的判定与性质以及三角形中位线定理;对各个命题进行正确判断是解题的关键.
    2、B
    【解析】
    根据分式的值为0的条件,列式求解即可.分式的值为0的条件是:(1)分子等于0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.
    【详解】
    解:由题意得:
    解得:x=1
    故答案为B
    本题考查了分式的值为0的条件,即:(1)分子等于0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.
    3、B
    【解析】
    判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
    【详解】
    A. =可化简,错误;
    B. 是最简二次根式 ,正确;
    C. =,可化简,错误;
    D. =,可化简,错误.故选B.
    本题考查了最简二次根式,解题的关键是掌握判断最简二次根式的两个条件:
    (1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;
    (2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.
    4、A
    【解析】
    根据题意利用勾股定理得出BC的长,进而得出答案.
    【详解】
    解:由题意得:在直角△ABC中,
    AC2+AB2=BC2,
    则12+22=BC2,
    ∴BC=,
    ∴树高为:(1+)m.
    故选:A.
    此题主要考查了勾股定理的应用,熟练利用勾股定理得出BC的长是解题关键.
    5、C
    【解析】
    根据加权平均数的定义列式计算可得.
    【详解】
    解:这天销售的矿泉水的平均单价是(元),
    故选:C.
    本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.
    6、A
    【解析】
    由图象可知:B(1,0),且当x>1时,y<0,即可得到不等式kx+b<0的解集是x>1,即可得出选项.
    【详解】
    解:∵一次函数y=kx+b的图象经过A、B两点,
    由图象可知:B(1,0),
    根据图象当x>1时,y<0,
    即:不等式kx+b<0的解集是x>1.
    故选:A.
    本题主要考查对一次函数与一元一次不等式的关系,一次函数的图象等知识点的理解和掌握,能根据图象进行说理是解此题的关键,用的数学思想是数形结合思想.
    7、C
    【解析】
    将点的坐标逐个代入函数解析式中,若等号两边相等则点在函数上,否则就不在.
    【详解】
    解:将x=-2.5,y=-4代入函数解析式中,等号左边-4,等号右边-6,故选项A错误;
    将x=1,y=3代入函数解析式中,等号左边3,等号右边1,故选项B错误;
    将x=2.5,y=4代入函数解析式中,等号左边4,等号右边4,故选项C正确;
    将x=0,y=1代入函数解析式中,等号左边1,等号右边-1,故选项D错误;
    故选:C.
    本题考查了一次函数图像上点的坐标特征,一次函数y=kx+b,(k≠0,且k,b为常数)的图像是一条直线.直线上任意一点的坐标都满足函数关系式y=kx+b.
    8、A
    【解析】
    根据整式方程、分式方程和无理方程的概念逐一判断即可得.
    【详解】
    A.方程是一般式,且方程的左边只有2项,此方程是二项方程,此选项正确;
    B.x2y−y=2是二元三次方程,此选项错误;
    C.是一元一次方程,属于整式方程,此选项错误;
    D.是一元二次方程,属于整式方程;
    故选A.
    本题主要考查无理方程,解题的关键是掌握整式方程、分式方程和无理方程的定义.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、8
    【解析】
    设该文具盒实际价格可打x折销售,根据利润率不低于20%列不等式进行求解即可得.
    【详解】
    设该文具盒实际价格可打x折销售,由题意得:
    6×-4≥4×20%,
    解得:x≥8,
    故答案为8.
    本题考查了一元一次不等式的应用,弄清题意,找准不等关系列出不等式是解题的关键.
    10、一
    【解析】
    根据一次函数的性质可以判断该函数经过哪几个象限,不经过哪个象限,本题得以解决.
    【详解】
    ∵一次函数y=-4x-5,k=-4<0,b=-5<0,
    ∴该函数经过第二、三、四象限,不经过第一象限,
    故答案为:一.
    本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.
    11、50
    【解析】
    乙从开始一直到终点,行1000米用时200秒,因此乙的速度为1000÷200=5米/秒,甲停下来,乙又走150÷5=30秒才与甲第一次会和,第一次会和前甲、乙共同行使150-30=120秒,从起点到第一次会和点的距离为5×150=750米,因此甲的速度为750÷120=6.25米/秒,甲行完全程的时间为1000÷6.25=160秒,甲到终点时乙行驶时间为160+30=190秒,因此乙距终点还剩200-190=10秒的路程,即10×5=50米.
    【详解】
    乙的速度为:1000÷200=5米/秒,从起点到第一次会和点距离为5×150=750米,
    甲停下来到乙到会和点时间150÷5=30秒,之前行驶时间150﹣30=120秒,
    甲的速度为750÷120=6.25米/秒,
    甲到终点时乙行驶时间1000÷6.25+30=190秒,
    还剩10秒路程,即10×5=50米,
    故答案为50米.
    考查函数图象的意义,将行程类实际问题和图象联系起来,理清速度、时间、路程之间的关系是解决问题关键.
    12、 或
    【解析】
    到两坐标轴距离相等,说明此点的横纵坐标的绝对值相等,那么x=y,或x=-y.据此作答.
    【详解】
    设 (x,y).
    ∵点为直线y=−2x+4上的一点,
    ∴y=−2x+4.
    又∵点到两坐标轴距离相等,
    ∴x=y或x=−y.
    当x=y时,解得x=y=,
    当x=−y时,解得y=−4,x=4.
    故点坐标为 或
    故答案为: 或
    考查一次函数图象上点的坐标特征,根据点到两坐标轴的距离相等,列出方程求解即可.
    13、30cm1
    【解析】
    根据直角三角形的斜边上中线性质求出斜边长,然后根据三角形的面积解答即可.
    【详解】
    解:∵直角三角形斜边上的中线是6cm,
    ∴斜边长为11cm,
    ∴面积为:cm1,
    故答案为:30cm1.
    本题考查了直角三角形斜边上中线性质的应用,解此题的关键是根据性质求出斜边的长,注意:直角三角形斜边上的中线等于斜边的一半.
    三、解答题(本大题共5个小题,共48分)
    14、.
    【解析】
    首先将分式进行化简,特别注意代入计算的数,不能使分式的分母为0.
    【详解】
    解:原式=

    = ,
    ∵a≠0,a2﹣1≠0,a2+a≠0,
    即a≠0,且a≠±1,
    ∴取a=2,
    原式=.
    本题主要考查分式化简求值,注意分式的分母不能为0
    15、(1);(2)四边形为菱形,理由详见解析;(3)以为顶点的四边形是平行四边形时,点坐标或或
    【解析】
    (1)根据题意求得点E的坐标,再代入,把代入得到,即可解答
    (2)先由折叠的性质得出,由平行线的性质得出 ,即四边形为菱形.
    (3)为顶点的四边形是平行四边形时,点坐标或或.
    【详解】
    解:(1)如图1中,
    ,是由翻折得到,

    在中,,
    ,设,
    在中,,解得,

    设直线的解析式为,把代入得到,
    直线的解析式为.
    (2)如图2中,四边形为菱形,
    理由:是由翻折得到,
    ,.

    ,而
    .四边形为菱形.
    (3)以为顶点的四边形是平行四边形时,
    点坐标或或.
    本题考查四边形综合,根据题意做辅助线和判断等量关系列出方程是解题关键.
    16、(1)①y=﹣x+3,②N(0, ),;(2) y=2x﹣2.
    【解析】
    (1)①由矩形的性质和等腰直角三角形的性质可求得∠BAP=∠BPA=45°,从而可得BP=AB=2,进而得到点P的坐标,再根据A、P两点的坐标从而可求AP的函数解析式;
    ②作G点关于y轴对称点G'(﹣2,0),作点G关于直线AP对称点G''(3,1),连接G'G''交y轴于N,交直线AP 于M,此时△GMN周长的最小,根据点G'、G''两点的坐标,求出其解析式,然后再根据一次函数的性质即可求解;
    (2)根据矩形的性质以及已知条件求得PD=PA,进而求得DM=AM,根据平行四边形的性质得出PD=DE,然后通过得出△PDM≌△EDO得出点E和点P的坐标,即可求得.
    【详解】
    解:(1)①∵矩形OABC,OA=3,OC=2,
    ∴A(3,0),C(0,2),B(3,2),
    AO∥BC,AO=BC=3,∠B=90°,CO=AB=2,
    ∵△APD为等腰直角三角形,
    ∴∠PAD=45°,
    ∵AO∥BC,
    ∴∠BPA=∠PAD=45°,
    ∵∠B=90°,
    ∴∠BAP=∠BPA=45°,
    ∴BP=AB=2,
    ∴P(1,2),
    设直线AP解析式y=kx+b,
    ∵过点A,点P,

    ∴ ,
    ∴直线AP解析式y=﹣x+3;
    ②如图所示:
    作G点关于y轴对称点G'(﹣2,0),作点G关于直线AP对称点G''(3,1)
    连接G'G''交y轴于N,交直线AP 于M,此时△GMN周长的最小,
    ∵G'(﹣2,0),G''(3,1)
    ∴直线G'G''解析式y=x+
    当x=0时,y=,
    ∴N(0,),
    ∵G'G''=,
    ∴△GMN周长的最小值为;
    (2)如图:作PM⊥AD于M,

    ∵BC∥OA
    ∴∠CPD=∠PDA且∠CPD=∠APB,
    ∴PD=PA,且PM⊥AD,
    ∴DM=AM,
    ∵四边形PAEF是平行四边形
    ∴PD=DE
    又∵∠PMD=∠DOE,∠ODE=∠PDM
    ∴△PMD≌△EOD,
    ∴OD=DM,OE=PM,
    ∴OD=DM=MA,
    ∵PM=2,OA=3,
    ∴OE=2,OM=2
    ∴E(0,﹣2),P(2,2)
    设直线PE的解析式y=mx+n


    ∴直线PE解析式y=2x﹣2.
    本题主要考查了求一次函数的解析式、矩形的性质、等腰三角形的性质、平行四边形的性质、对称的性质等知识点,熟练掌握基础知识正确的作出辅助线是解题的关键.
    17、 (1) y=-66x+53000;(2)购进甲种包装的苦荞茶100盒,购进乙种包装的苦荞茶400盒时,所获利润最大,最大利润为9600元
    【解析】
    (1)根据总进价=进价×数量列出函数关系式;
    (2)根据题意可以得到利润和购买甲种商品数量的函数关系式,再根据乙种包装苦荞茶的数量不大于甲种包装数量的4倍和一次函数的性质即可解答本题.
    【详解】
    (1)由题可得
    y=40x+106(500-x)=-66x+53000
    (2)设总利润为w元
    由题可得:500-x≤4x
    ∴x≥100.
    ∴w=(48-40)x+(128-106)(500-x)
    =8x+22(500-x)
    =-14x+11000
    ∵k=-14

    相关试卷

    2024-2025学年山西省灵石县数学九上开学学业水平测试试题【含答案】:

    这是一份2024-2025学年山西省灵石县数学九上开学学业水平测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年平顶山市重点中学数学九上开学学业水平测试模拟试题【含答案】:

    这是一份2024-2025学年平顶山市重点中学数学九上开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江西省宜春实验中学数学九上开学学业水平测试模拟试题【含答案】:

    这是一份2024-2025学年江西省宜春实验中学数学九上开学学业水平测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map