2024-2025学年平顶山市重点中学数学九上开学学业水平测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列分解因式正确的是( )
A.x2-x+2=x(x-1)+2B.x2-x=x(x-1)C.x-1=x(1-)D.(x-1)2=x2-2x+1
2、(4分)下列调查中,适合进行普查的是( )
A.一个班级学生的体重
B.我国中学生喜欢上数学课的人数
C.一批灯泡的使用寿命
D.《新闻联播》电视栏目的收视率
3、(4分)下列事件中,属于随机事件的是( )
A.一组对边平行且一组对角相等的四边形是平行四边形
B.一组对边平行另一组对边相等的四边形是平行四边形
C.矩形的两条对角线相等
D.菱形的每一条对角线平分一组对角
4、(4分)若分式有意义,则x的取值范围是( )
A.x=1B.x≠1C.x>1D.x<1
5、(4分)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①BE=DF;②∠AEB=75°;③CE=2;④S正方形ABCD=2+,其中正确答案是( )
A.①②B.②③C.①②④D.①②③
6、(4分)如果5x=6y,那么下列结论正确的是( )
A.B.C.D.
7、(4分)下列各式从左到右的变形为分解因式的是( )
A.m2﹣m﹣6=(m+2)(m﹣3)
B.(m+2)(m﹣3)=m2﹣m﹣6
C.x2+8x﹣9=(x+3)(x﹣3)+8x
D.x2+1=x(x+)
8、(4分)下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择 ( )
A.甲B.乙C.丙D.丁
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,中,为的中点,平分,,若,,则______.
10、(4分)如图在平面直角坐标系xOy中,直线l经过点A(-1,0),点A1,A2,A3,A4,A5,……按所示的规律排列在直线l上.若直线 l上任意相邻两个点的横坐标都相差1、纵坐标也都相差1,若点An(n为正整数)的横坐标为2015,则n=___________.
11、(4分)计算:=________.
12、(4分)已知54-1能被20~30之间的两个整数整除,则这两个整数是_________.
13、(4分)如图,的中位线,把沿折叠,使点落在边上的点处,若、两点之间的距离是,则的面积为______;
三、解答题(本大题共5个小题,共48分)
14、(12分)如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.
(1)求证:平行四边形ABCD是矩形;
(2)请添加一个条件使矩形ABCD为正方形.
15、(8分)七年级某班体育委员统计了全班同学 60 秒垫排球次数,并列出下列频数分布表:
(1)全班共有 名同学;
(2)垫排球次数 x 在 20≤x<40 范围的同学有 名,占全班人数的 %;
(3)若使垫排球次数 x 在 20≤x<40 范围的同学到九年级毕业时占全班人数的 87.12%,则八、九年级平均每年的垫排球次数增长率为多少?
16、(8分)如图,正方形ABCD中,CD=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.
(1)求证:△ABG≌△AFG;
(2)求GC的长.
17、(10分)(1)计算
(2)下面是小刚解分式方程的过程,请仔细阅读,并解答所提出的问题.
解方程
解:方程两边乘,得第一步
解得 第二步
检验:当时,.
所以,原分式方程的解是 第三步
小刚的解法从第 步开始出现错误,原分式方程正确的解应是 .
18、(10分) (1)
(2)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)关于一元二次方程的一个根为,则另一个根为__________.
20、(4分)花粉的质量很小.一粒某种植物花粉的质量约为0.000 037毫克,那么0.000 037毫克可用科学记数法表示为________毫克.
21、(4分)如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为10和6时,则阴影部分的面积为_________.
22、(4分)在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是 .
23、(4分)在菱形中,,,则菱形的周长是_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,平行四边形ABCD的对角线AC,BD相交于点O,AB=5,BC=1.
(1)求OD长的取值范围;
(2)若∠CBD=30°,求OD的长.
25、(10分)计算:(1);(2)先化简,再求值:,其中
26、(12分)甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示.
根据图中信息,回答下列问题:
(1)甲的平均数是 ,乙的中位数是 ;
(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据因式分解的定义对各选项分析判断后利用排除法求解.
【详解】
A、x2-x+2=x(x-1)+2,不是分解因式,故选项错误;
B、x2-x=x(x-1),故选项正确;
C、x-1=x(1-),不是分解因式,故选项错误;
D、(x-1)2=x2-2x+1,不是分解因式,故选项错误.
故选:B.
本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.
2、A
【解析】
根据具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查即可解答本题.
【详解】
A、调查一个班级学生的体重,人数较少,容易调查,因而适合普查,故选项正确;
B、调查我国中学生喜欢上数学课的人数,因为人数太多,不容易调查,因而适合抽查,故选项错误;
C、调查一批灯泡的使用寿命,调查具有普坏性,因而适合抽查,故选项错误;
D、调查结果不是很重要,且要普查要用大量的人力、物力,因而不适合普查,应用抽查,故选项错误.
故选A.
本题考查抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选择,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、B
【解析】
根据平行四边形的判定、矩形的性质、菱形的性质结合随机事件与必然事件的概念逐一进行分析判断即可.
【详解】
A. 一组对边平行且一组对角相等的四边形是平行四边形,正确,是必然事件,故不符合题意;
B. 一组对边平行另一组对边相等的四边形是平行四边形或等腰梯形,是随机事件,故符合题意;
C. 矩形的两条对角线相等,正确,是必然事件,故不符合题意;
D. 菱形的每一条对角线平分一组对角,正确,是必然事件,故不符合题意,
故选B.
本题考查了随机事件与必然事件,涉及了平行四边形的判定、矩形的性质、菱形的性质等,熟练掌握相关的知识是解题的关键.
4、B
【解析】
根据分式有意义的条件即可求出答案.
【详解】
由分式有意义的条件可知:x-1≠0,
∴x≠1,
故选:B.
本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.
5、C
【解析】
证明Rt△ABE≌Rt△ADF,根据全等三角形的性质得到BE=DF;根据等腰直角三角形的性质、等边三角形的性质求出∠AEB;根据等腰直角三角形的性质求出CE;根据勾股定理求出正方形的边长.
【详解】
∵四边形ABCD是正方形,
∴AB=AD,
∵△AEF是等边三角形,
∴AE=AF,
在Rt△ABE和Rt△ADF中,
,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF,①说法正确;
∵CB=CD,BE=DF,
∴CE=CF,即△ECF是等腰直角三角形,
∴∠CEF=45°,
∵∠AEF=60°,
∴∠AEB=75°,②说法正确;
如图,∵△CEF为等腰直角三角形,EF=2,
∴CE=,③说法错误;
设正方形的边长为a,则DF=a-,
在Rt△ADF中,
AD2+DF2=AF2,即a2+(a-)2=4,
解得a=或a=(舍去),
则a2=2+,即S正方形ABCD=2+,④说法正确,
故选C.
本题考查的是正方形的性质、全等三角形的判定和性质,解答本题的关键是熟练掌握全等三角形的证明.
6、A
【解析】
试题解析:A, 可以得出:
故选A.
7、A
【解析】
根据因式分解的概念逐项判断即可.
【详解】
A、等式从左边到右边,把多项式化成了两个整式积的形式,符合因式分解的定义,故A正确;
B、等式从左边到右边属于整式的乘法,故B不正确;
C、等式的右边最后计算的是和,不符合因式分解的定义,故C不正确;
D、在等式的右边不是整式,故D不正确;
故选A.
8、A
【解析】
∵甲的平均数和丙的平均数相等大于乙和丁的平均数,
∴从甲和丙中选择一人参加比赛,
又∵甲的方差与乙的方差相等,小于丙和丁的方差.
∴选择甲参赛,故选A.
考点:方差;算术平均数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3
【解析】
延长BD交AC于H,证明△ADB≌△ADH,根据全等三角形的性质得到AH=AB=10,BD=DH,根据三角形的中位线定理即可求解.
【详解】
延长BD交AC于H,
∵平分,,
∴∠BAD=∠HAD,∠ADB=∠ADH=90°,又AD=AD,
∴△ADB≌△ADH,
∴AH=AB=10,D为BH中点,
∴CH=AC-AH=6,
∵E为BC中点,
故DE是△BCH的中位线,
∴DE=CH=3,
故填:3.
此题主要考查三角形中位线的判定与性质,解题的关键是根据题意作出辅助线证明三角形全等进行求解.
10、4031.
【解析】
试题分析:本题主要考查了一次函数图象上点的坐标特征,解题的关键是找出坐标的规律.观察①n为奇数时,横坐标纵坐标变化得出规律;②n为偶数时,横坐标纵坐标变化得出规律,再求解.
试题解析:观察①n为奇数时,横坐标变化:-1+1,-1+2,-1+3,…-1+,
纵坐标变化为:0-1,0-2,0-3,…-,
②n为偶数时,横坐标变化:-1-1,-1-2,-1-3,…-1-,
纵坐标变化为:1,2,3,…,
∵点An(n为正整数)的横坐标为2015,
∴-1+=2015,解得n=4031,
故答案为4031.
考点:一次函数图象上点的坐标特征.
11、7
【解析】
根据平方差公式展开,再开出即可;
【详解】
=
=
=7.
故答案为7.
本题考查了二次根式的化简,主要考查学生的计算和化简能力,题目比较好,难度适中.
12、24,26
【解析】
将54-1利用分解因式的知识进行分解,再结合题目54-1能被20至30之间的两个整数整除即可得出答案.
【详解】
54−1=(5+1)(5−1)
∵54−1能被20至30之间的两个整数整除,
∴可得:5+1=26,5−1=24.
故答案为:24,26
此题考查因式分解的应用,解题关键在于掌握运算法则
13、40.
【解析】
根据对称轴垂直平分对应点连线,可得AF即是△ABC的高,再由中位线的性质求出BC,继而可得△ABC的面积.
【详解】
解:如图,连接AF,
∵DE为△ABC的中位线,
∴DE//BC,BC=2DE=10cm.
由折叠的性质可得:,
∴,
∴.
故答案是40.
本题考查翻折变换(折叠问题), 三角形中位线定理.在三角形底已知的情况下要求三角形的面积,只需要求出它的高即可,本题解题关键是连接AF,证明AF为△ABC的高.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)AB=AD(或AC⊥BD答案不唯一).
【解析】
试题分析:(1)根据平行四边形对角线互相平分可得OA=OC,OB=OD,根据等角对等边可得OB=OC,然后求出AC=BD,再根据对角线相等的平行四边形是矩形证明;
(2)根据正方形的判定方法添加即可.
试题解析:解:(1)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴平行四边形ABCD是矩形;
(2)AB=AD(或AC⊥BD答案不唯一).
理由:∵四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形.
或:∵四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形.
15、(1)50;(2)36,72;(3).
【解析】
(1)由图可知所有的频数之和即为人数;
(2)由图可知,把20≤x<40的两组频数相加即可,然后除以总人数即可得到答案;
(3)先计算到九年级20≤x<40的人数,然后设增长率为m,列出方程,解除m即可.
【详解】
解:(1)全班总人数=1+4+21+15+5+4=50(人),
故答案为:50.
(2)垫排球次数 x 在 20≤x<40 范围的同学有:21+15=36(人);
百分比为:;
故答案为:36,72.
(3)根据题意,设平均每年的增长率为m,则
解得:(舍去),
故八、九年级平均每年的垫排球次数增长率为:.
本题考查了一元二次方程的应用和频数分布表,频数分布表能够表示出具体数字,知道频率=频数÷总数和考查根据图表获取信息的能力,以及增长率的计算.解题的关键是在频数分布表中得到正确的信息.
16、(1)证明见解析;(2)3.
【解析】
(1)根据翻折的性质可得AF=AB,∠AFG=90°,然后利用“HL”证明 Rt△ABG和Rt△AFG全等即可;
(2)先求出DE、CE的长,从而得到EF,设BG=x,然后表示出GF,再求出CG、EG的长,然后在Rt△CEG中,利用勾股定理列式求出x的值,继而则可求得CG的长.
【详解】
(1)在正方形ABCD中,AD=AB,∠D=∠B=∠C=90°,
又∵△ADE沿AE对折至△AFE,延长EF交边BC于点G,
∴∠AFG=∠AFE=∠D=90°,AF=AD,
即有∠B=∠AFG=90°,AB=AF,AG=AG,
在Rt△ABG和Rt△AFG中,
,
∴Rt△ABG≌Rt△AFG(HL);
(2)∵AB=6,点E在边CD上,且CD=3DE,
∴DE=FE=2,CE=4,
不妨设BG=FG=x,(x>0),
则CG=6-x,EG=2+x,
在Rt△CEG中,(2+x)2=42+(6-x)2,
解得x=3,
∴GC=BC-BG=6-3=3.
本题考查了正方形的性质,全等三角形的判定与性质,翻折变换的性质,勾股定理的应用等,综合性较强,熟练掌握相关性质以及定理是解题的关键.
17、(1);(2)一 ,
【解析】
(1)利用完全平方公式和单项式除以单项式的法则进行计算,然后合并同类项化简;(2)按照解分式方程的步骤进行判断发现小刚在第一步去分母时,常数项2漏乘,然后进行正确的解方程计算,从而求解即可.
【详解】
解:(1)
=
=
=
=
(2)小刚的解法从第一步开始出现错误
解方程
解:方程两边乘,得
解得
检验:当时,.
所以,原分式方程的解是
故答案为:一 ,
本题考查整式的混合运算及解分式方程,掌握完全平方公式的结构及解分式方程的步骤,正确计算是本题的解题关键.
18、(1)x1=−3,x2=3;(2)x1=,x2=1.
【解析】
(1)先移项得到2x(x+3)−6(x+3)=0,然后利用因式分解法解方程;
(2)先把方程整理为一般式,然后利用因式分解法解方程.
【详解】
解:(1)2x(x+3)−6(x+3)=0,
(x+3)(2x−6)=0,
x+3=0或2x−6=0,
所以x1=−3,x2=3;
(2)
2x2+3x−5=0,
(2x+5)(x−1)=0,
2x+5=0或x−1=0,
所以x1=,x2=1.
本题考查了解一元二次方程−因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
利用根与系数的关系可得出方程的两根之积为-1,结合方程的一个根为-1,可求出方程的另一个根,此题得解.
【详解】
∵a=1,b=m,c=-1,
∴x1•x2==-1.
∵关于x一元二次方程x2+mx-1=0的一个根为x=-1,
∴另一个根为-1÷(-1)=1.
故答案为:1.
此题考查根与系数的关系以及一元二次方程的解,牢记两根之积等于是解题的关键.
20、
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
0.000037毫克可用科学记数法表示为3.7×10-5毫克.
故答案为:.
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
21、1
【解析】
根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半,即可得出结果.
【详解】
解:∵O是菱形两条对角线的交点,菱形ABCD是中心对称图形,
∴△OEG≌△OFH,四边形OMAH≌四边形ONCG,四边形OEDM≌四边形OFBN,
∴阴影部分的面积=S菱形ABCD=×(×10×6)=1.
故答案为:1.
本题考查了中心对称,菱形的性质,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.
22、1.
【解析】
试题分析:因为菱形的对角线垂直平分,对角线AC,BD的长分别是6和8,
所以一半长是3和4,
所以菱形的边长是5,
所以周长是5×4=1.
故答案为:1.
考点:菱形的性质.
23、
【解析】
根据菱形的性质,得到AO=3,BO=4,AC⊥BD,由勾股定理求出AB,即可求出周长.
【详解】
解:∵四边形是菱形,
∴,,AC⊥BD,
∴△ABO是直角三角形,
由勾股定理,得
,
∴菱形的周长是:;
故答案为:20.
本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质进行求解.
二、解答题(本大题共3个小题,共30分)
24、(1);(2).
【解析】
(1)根据三角形三边关系即可求解;
(2)过点D作DE⊥BC交BC延长线于点E,构建直角三角形,利用勾股定理解题即可.
【详解】
解:(1)∵四边形ABCD是平行四边形,AB=5,BC=1,
∴AB=CD=5,BC=AD=1,OD=BD,
∴在△ABD中,,
∴.
(2)过点D作DE⊥BC交BC延长线于点E,
∵∠CBD=30°,
∴DE=BD,
∵四边形ABCD是平行四边形,
∴OD=BD=DE,
设OD为x,则DE=x,BD=2x,
∴BE=,
∵BC=1,
∴CE=BE-BC=-1,
在Rt△CDE中,,
解得,,
∵BE=>BC=1,
∴不合题意,舍
∴OD=.
故答案为:(1);(2).
本题考查了平行四边形性质、三角形三边关系以及勾股定理的运用,熟练解一元二次方程是解决本题的关键.
25、(1) (2)3.
【解析】
(1)根据特殊角的三角函数值、绝对值化简可以解答本题;
(2)根据异分母分式加减法法则可以化简题目中的式子,然后将x=2代入即可解答.
【详解】
解:(1),
=,
=.
(2),
=,
=,
=,
当x=-2时,原式==3.
本题考查了实数的运算,特殊角的三角函数值以及分式的化简求值,属于基础题,熟记实数混合运算法则即可解题.
26、(1)8;7.5(2)乙运动员射击更稳定
【解析】
(1)根据平均数和中位数的定义解答即可;
(2)计算方差,并根据方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定解答.
【详解】
解:(1)甲的平均数==8.
乙的十次射击成绩按从小到大顺序排列为7,7,7,7,7,8,9,9,9,10,中位数是7.5;
故答案为8;7.5;
(2)=[+++]=1.6;
乙=(7+7+7+7+7+8+9+9+9+10)=8,
=[++]=1.2;
∴
∴乙运动员的射击成绩更稳定.
此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
题号
一
二
三
四
五
总分
得分
次数
0≤x<10
10≤x<20
20≤x<30
30≤x<40
40≤x<50
50≤x<60
频数
1
4
21
15
5
4
2024-2025学年内蒙古根河市金河中学数学九上开学学业水平测试试题【含答案】: 这是一份2024-2025学年内蒙古根河市金河中学数学九上开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年临沂市重点中学数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年临沂市重点中学数学九上开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江西省宜春实验中学数学九上开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年江西省宜春实验中学数学九上开学学业水平测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。