2024-2025学年江苏省扬州市广陵区树人学校九年级数学第一学期开学质量跟踪监视试题【含答案】
展开这是一份2024-2025学年江苏省扬州市广陵区树人学校九年级数学第一学期开学质量跟踪监视试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在正方形中,以点为圆心,以长为半径画圆弧,交对角线于点,再分别以点、为圆心,以大于长为半径画圆弧,两弧交于点,连结并延长,交的延长线于点,则的大小为( )
A.B.C.D.
2、(4分)下列函数①y=5x;②y=﹣2x﹣1;③y=;④y=x﹣6;⑤y=x2﹣1其中,是一次函数的有( )
A.1个B.2个C.3个D.4个
3、(4分)平移直线得到直线,正确的平移方式是( )
A.向上平移个单位长度B.向下平移个单位长度
C.向左平移个单位长度D.向右平移个单位长度
4、(4分)=( )
A.4B.2C.﹣2D.±2
5、(4分)若点(﹣2,y1)、(﹣1,y2)和(1,y3)分别在反比例函数y=﹣的图象上,则下列判断中正确的是( )
A.y1<y2<y3B.y3<y1<y2C.y2<y3<y1D.y3<y2<y1
6、(4分)下列各式成立的是 ( )
A.=2B.=-5C.=xD.=±6
7、(4分)不等式组的解集在数轴上可表示为( )
A.B.C.D.
8、(4分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )
A.∠ABC=∠ADC,∠BAD=∠BCDB.AB=BC
C.AB=CD,AD=BCD.∠DAB+∠BCD=180°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图是某超市一层到二层电梯的示意图,其中AB、CD分别表示超市一层、二层电梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘电梯从点B到点C上升的高度h约为________米.
10、(4分)如图,将长8cm,宽4cm的矩形ABCD纸片折叠,使点A与C重合,则折痕EF的长为_________cm.
11、(4分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为_____.(写出一个即可)
12、(4分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式2x+m<﹣x﹣2<0的解集为_____.
13、(4分)直线的截距是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在△ABC中.AC=BC=5.AB=6.CD是AB边中线.点P从点C出发,以每秒2.5个单位长度的速度沿C-D-C运动.在点P出发的同时,点Q也从点C出发,以每秒2个单位长度的速度沿边CA向点A运动.当一个点停止运动时,另一个点也随之停止,设点P运动的时间为t秒.
(1)用含t的代数式表示CP、CQ的长度.
(2)用含t的代数式表示△CPQ的面积.
(3)当△CPQ与△CAD相似时,直接写出t的取值范围.
15、(8分)如图,正方形网格上有和.(每一个小正方形的边长为)
求证:;
请你在正方形网格中画一个以点为位似中心的三角形并将放大倍.
16、(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形.如图,已知整点A(1,6),请在所给网格区域(含边界)上按要求画整点四边形.
(1)在图1中画一个整点四边形ABCD,四边形是轴对称图形,且面积为10;
(2)在图2中画一个整点四边形ABCD,四边形是中心对称图形,且有两个顶点各自的横坐标比纵坐标小1.
17、(10分)为了普及环保知识,增强环保意识,某大学某专业学院从本专业450人中随机抽取了30名学生参加环保知识测试,得分(十分制)情况如图所示:
(1)这30名学生的测试成绩的众数,中位数,平均数分别是多少?
(2)学院准备拿出2000元购买奖品奖励测试成绩优秀的学生,奖品分为三等,成绩为10分的为一等,成绩为8分和9分的为二等,成绩为7分的为三等;学院要求一等奖奖金,二等奖奖金,三等奖奖金分别占20%、40%、40%,问每种奖品的单价各为多少元?
(3)如果该专业学院的学生全部参加测试,在(2)问的奖励方案下,请你预测该专业学院将会拿出多少奖金来奖励学生,其中一等奖奖金为多少元?
18、(10分)如图,正方形,点为射线上的一个动点,点为的中点,连接,过点作于点.
(1)请找出图中一对相似三角形,并证明;
(2)若,以点为顶点的三角形与相似,试求出的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知的顶点坐标分别是,,.过点的直线与相交于点.若分的面积比为,则点的坐标为________.
20、(4分)如图,在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=DM.当AM⊥BM时,则BC的长为____.
21、(4分)已知三角形的三条中位线的长分别为5cm、6cm、10cm,则这个三角形的周长是_____cm.
22、(4分)若点A(2,m)在平面直角坐标系的x轴上,则点P(m-1,m+3)到原点O的距离为_____.
23、(4分)比较大小: _____. (填“>”、“<"或“=")
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,在△ABC中,AB=AC,点D是BC的中点,作∠EAB=∠BAD,AE边交CB的延长线于点E,延长AD到点F,使AF=AE,连结CF.
求证:BE=CF.
25、(10分)如图,ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.
(1)求∠APB的度数;
(2)如果AD=5cm,AP=8cm,求△APB的周长.
26、(12分)某地至北京的高铁里程约为600km,甲、乙两人从此地出发,分别乘坐高铁A与高铁B前往北京.已知A车的平均速度比B车的平均速度慢50km/h,A车的行驶时间比B车的行驶时间多20%,B车的行驶的时间为多少小时?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据正方形的性质得到∠DAC=∠ACD=45°,由作图知,∠CAP=
∠DAC=22.5°,根据三角形的内角和即可得到结论.
【详解】
解:在正方形中,∠DAC=∠ACD=45∘,
由作图知,∠CAP=∠DAP=22.5°,
∴∠P=180°−∠ACP−∠CAP=22.5°,
故选B.
本题考察了正方形的性质,掌握正方形的对角线平分对角是解题的关键.
2、C
【解析】
直接利用一次函数的定义:一般地:形如(,、是常数)的函数,进而判断得出答案.
【详解】
①;②;③;④;⑤其中,是一次函数的有:①;②;④共3个.
故选:.
此题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.
3、A
【解析】
根据“上加下减”法则进行判断即可.
【详解】
将直线向上平移个单位长度得到直线,
故选:A.
本题主要考查了函数图像平移的性质,熟练掌握相关平移特点是解题关键.
4、B
【解析】
根据算术平方根,即可解答.
【详解】
==2,
故选B.
本题考查了算术平方根,解决本题的关键是熟记算术平方根的定义.
5、B
【解析】
先根据反比例函数中,k2+1>0,可知-( k2+1)<0,判断出函数图像所在的象限及增减性,再根据各点横坐标的特点即可得出结论.
【详解】
解:∵反比例函数的,-( k2+1)<0,
∴函数图像的两个分支分别位于第二、四象限,且在每一象限内y随x的增大而增大.
∵-2<-1<0,
∴点、位于第二象限,且在第二象限内y随x的增大而增大,
∴y2>y1>0,
又∵1>0,
∴点位于第四象限,
∴y3<0,
∴y3
本题考查的是反比例函数图像上的点的坐标特点,熟知反比例函数图像上各点坐标一定适合此函数的解析式是解题的关键.
6、A
【解析】
分析:根据算术平方根的定义判断即可.
详解:A.,正确;
B.,错误;
C.,错误;
D.,错误.
故选A.
点睛:本题考查了算术平方根问题,关键是根据算术平方根的定义解答.
7、D
【解析】
先解不等式组可求得不等式组的解集是,再根据在数轴上表示不等式解集的方法进行表示.
【详解】
解不等式组可求得:
不等式组的解集是,
故选D.
本题主要考查不等组的解集数轴表示,解决本题的关键是要熟练掌握正确表示不等式组解集的方法.
8、D
【解析】
首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形为菱形.所以根据菱形的性质进行判断.
【详解】
解:
四边形是用两张等宽的纸条交叉重叠地放在一起而组成的图形,
,,
四边形是平行四边形(对边相互平行的四边形是平行四边形);
过点分别作,边上的高为,.则
(两纸条相同,纸条宽度相同);
平行四边形中,,即,
,即.故正确;
平行四边形为菱形(邻边相等的平行四边形是菱形).
,(菱形的对角相等),故正确;
,(平行四边形的对边相等),故正确;
如果四边形是矩形时,该等式成立.故不一定正确.
故选:.
本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
过点C作CE⊥AB,交AB的延长线于E,
∵∠ABC=150°,
∴∠CBE=30°,
在Rt△BCE中,∵BC=12,∠CBE=30°,
∴CE=BC=1.
故答案是1.
点睛:本题考查了含30°角的直角三角形的性质,解题的关键是作辅助线构造直角三角形.
10、
【解析】
过点F作AB的垂线,垂足为H,设DF=X,则,C=4,FC=,
,即DF=3,在直角三角形FHE中,
11、1
【解析】
【分析】由直线y=1x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围,在其内任取一数即可得出结论.
【详解】∵直线y=1x与线段AB有公共点,
∴1n≥3,
∴n≥,
故答案为:1.
【点睛】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.
12、-1<x<1.
【解析】
先将点P(n,﹣4)代入y=﹣x﹣1,求出n的值,再找出直线y=1x+m落在y=﹣x﹣1的下方且都在x轴下方的部分对应的自变量的取值范围即可.
【详解】
解:∵一次函数y=﹣x﹣1的图象过点P(n,﹣4),
∴﹣4=﹣n﹣1,解得n=1,
∴P(1,﹣4),
又∵y=﹣x﹣1与x轴的交点是(﹣1,0),
∴关于x的不等式1x+m<﹣x﹣1<0的解集为﹣1<x<1.
故答案为﹣1<x<1.
本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.
13、-5
【解析】
根据截距的定义:直线方程y=kx+b中,b就是截距解答即可.
【详解】
直线的截距是−5.
故答案为:−5.
此题考查一次函数图象,解题关键在于掌握一次函数图象上点的坐标特征.
三、解答题(本大题共5个小题,共48分)
14、(1)当0<t≤时,CP=2.5t,CQ=2t;当时,CP=8-2.5t,CQ=2t.
(2)当0<t≤时,S△CPQ=•PC•sin∠ACD•CQ=×2.5t××2t=;当时,S△CPQ=•PC•sin∠ACD•CQ=×(8-2.5t)××2t=.
(3)0<t≤或s
【解析】
(1)分两种情形:当0<t≤时,当<t时,分别求解即可.
(2)分两种情形:当0<t≤时,当<t≤时,根据S△CPQ=•PC•sin∠ACD•CQ分别求解即可.
(3)分两种情形:当0<t≤,可以证明△QCP∽△DCA,当<t,∠QPC=90°时,△QPC∽△ADC,构建方程求解即可.
【详解】
解:(1)∵CA=CB,AD=BD=3,
∴CD⊥AB,
∴∠ADC=90°,
∴CD===4,
当0<t≤时,CP=2.5t,CQ=2t,
当时,CP=8-2.5t,CQ=2t.
(2)∵sin∠ACD==,
∴当0<t≤时,S△CPQ=•PC•sin∠ACD•CQ=×2.5t××2t=
当时,S△CPQ=•PC•sin∠ACD•CQ=×(8-2.5t)××2t=.
(3)①当0<t≤时,
∵CP=2.5t,CQ=2t,
∴=,
∵=,
∴,
∵∠PCQ=∠ACD,
∴△QCP∽△DCA,
∴0<t≤时,△QCP∽△DCA,
②当时,当∠QPC=90°时,△QPC∽△ADC,
∴,
∴,
解得:,
综上所述,满足条件的t的值为:0<t≤或s时,△QCP∽△DCA.
本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形的应用等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
15、 (1)见解析;(2)见解析.
【解析】
(1)利用、,
,即可得出△A1B1C1∽△A2B2C2;
(2)延长C2A2到A′,使2C2A2=C2A′,得到C2的对应点A′,同法得到其余点的对应点,顺次连接即为所求图形.
【详解】
.证明:∵,,
,
∴,
∴;
解:如图所示:
此题主要考查了相似三角形的判定以及位似变换的关键是根据位似中心和位似比确定对应点的位置.
16、画图见解析.
【解析】
【分析】(1)结合网格特点以及轴对称图形有定义进行作图即可得;
(2)结合网格特点以及中心对称图形的定义按要求作图即可得.
【详解】(1)如图所示(答案不唯一);
(2)如图所示(答案不唯一).
【点睛】本题考查了作图,轴对称图形、中心对称图形等,熟知网格特点以及轴对称图形、中心对称图形的定义是解题的关键.
17、(1)众数是7,中位数是 7,平均数是,(2)一,二,三等奖奖金每种奖品的单价分别为200元,160元,100元;(3)一等奖奖金为6000元.
【解析】
根据众数,中位数,平均数的定义即可进行解答;
分别用总钱数百分比人数可得每种奖品的单价;
先计算一等奖的人数占30人的百分比,再与450相乘可得一等奖的总人数,根据单价200元可得结论.
【详解】
由图形可知:众数是7,
中位数:第15个数和第16个数的平均数:7,
平均数:;
一等奖奖金:元,
二等奖奖金:元,
三等奖奖金:元,
答:一,二,三等奖奖金每种奖品的单价分别为200元,160元,100元;
元,
答:其中一等奖奖金为6000元.
本题考查了众数、平均数和中位数的定义,用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大或从大到小的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数平均数是指在一组数据中所有数据之和再除以数据的个数.
18、(1),见解析;(2)或.
【解析】
(1)通过等角转换,可得出三角相等,即可判定;
(2)首先根据已知条件求出DQ,由三角形相似的性质,列出方程,即可得解,注意分两种情况讨论.
【详解】
(1)
根据已知条件,得∠DAQ=∠PED=90°
又∵∠ADQ+∠PDE=∠DPE+∠PDE=90°
∴∠ADQ =∠DPE,∠AQD=∠PDE
∴
(2)由已知条件,得
设DE为
∵
∴
∴PE为
∵
∴分两种情况:
①
即
解得
∴
②
即
解得
此题主要考查三角形相似的性质,熟练掌握,即可解题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(5,-)或(5,-).
【解析】
由AE分△ABC的面积比为1:2,可得出BE:CE=1:2或BE:CE=2:1,由点B,C的坐标可得出线段BC的长度,再由BE:CE=1:2或BE:CE=2:1结合点B的坐标可得出点E的坐标,此题得解.
【详解】
∵AE分△ABC的面积比为1:2,点E在线段BC上,
∴BE:CE=1:2或BE:CE=2:1.
∵B(5,1),C(5,-6),
∴BC=1-(-6)=2.
当BE:CE=1:2时,点E的坐标为(5,1-×2),即(5,-);
当BE:CE=2:1时,点E的坐标为(5,1-×2),即(5,-).
故答案为:(5,-)或(5,-).
本题考查了比例的性质以及三角形的面积,由三角形的面积比找出BE:CE的比值是解题的关键.
20、1
【解析】
根据直角三角形的性质(斜边上的中线等于斜边的一半),求出DM=AB=3,即可得到ME=1,根据题意求出DE=DM+ME=4,根据三角形中位线定理可得BC=2DE=1.
【详解】
解:∵AM⊥BM,点D是AB的中点,
∴DM=AB=3,
∵ME=DM,
∴ME=1,
∴DE=DM+ME=4,
∵D是AB的中点,DE∥BC,
∴BC=2DE=1,
故答案为:1.
点睛:本题考查的是三角形的中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
21、1
【解析】
根据三角形的中位线定理解答即可.
【详解】
∵三角形的三条中位线的长分别是5cm、6cm、10cm,
∴三角形的三条边分别是10cm、12cm、20cm.
∴这个三角形的周长=10+12+20=1cm.
故答案是:1.
本题考查了三角形的中位线定理,熟知三角形的中位线定理是解决问题的关键.
22、
【解析】
首先根据x轴上的点纵坐标为0得出m的值,再根据勾股定理即可求解.
【详解】
解:∵点A(2,m)在直角坐标系的x轴上,
∴m=0,
∴点P(m-1,m+3),即(-1,3)到原点O的距离为.
故答案为:.
本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.求出m的值是解题的关键.
23、
【解析】
首先分别求出两个数的平方的大小;然后根据:两个正实数,平方大的这个数也大,判断出两个数的大小关系即可.
【详解】
解:,,
,
.
故答案为:.
此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数负实数,两个正实数,平方大的这个数也大.
二、解答题(本大题共3个小题,共30分)
24、证明见解析.
【解析】
试题分析:根据等腰三角形的性质可得∠CAD=∠BAD,由等量关系可得∠CAD=∠EAB,有SAS可证△ACF≌△ABE,再根据全等三角形的对应边相等即可得证.
试题解析:证明:∵AB=AC,点D是BC的中点,∴∠CAD=∠BAD.
又∵∠EAB=∠BAD,∴∠CAD=∠EAB.
在△ACF和△ABE中,∵AC=AB,∠CAF=∠BAE,AF=AE,∴△ACF≌△ABE(SAS),∴BE=CF.
点睛:此题考查了等腰三角形的性质以及全等三角形的判定与性质.此题难度中等,注意掌握数形结合思想的应用.
25、 (1)∠APB=90°; (2)△APB的周长是24cm.
【解析】
【分析】(1)根据平行四边形性质得出AD∥CB,AB∥CD,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB中求出∠APB即可;
(2)求出AD=DP=5,BC=PC=5,求出DC=10=AB,即可求出答案.
【详解】(1)∵四边形是平行四边形,
∴∥ ,∥, ,
∴ ,
又∵和分别平分和,
∴ ,
∴ ;
(2) ∵平分,∥ ,
∴ ,
∴ ,同理: ,
∴ ,
在中, , ∴ ,
∴△的周长.
【点睛】本题考查了平行四边形的性质,等腰三角形的判定与性质等,熟练掌握平行四边形的性质是解题的关键.
26、2
【解析】
设B车行驶x小时,则A行驶(1+20%)x小时,根据题意即可列出分式方程进行求解.
【详解】
解:设B车行驶x小时,则A行驶(1+20%)x小时.
由题意得
解得:x=2
经检验:x=2是原方程的解.
B车的行驶的时间为2小时.
此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系列方程.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2024-2025学年江苏省苏州市南环中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省如皋市八校数学九年级第一学期开学质量跟踪监视试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。