


2024-2025学年江苏省盐城市亭湖初级中学九年级数学第一学期开学调研试题【含答案】
展开这是一份2024-2025学年江苏省盐城市亭湖初级中学九年级数学第一学期开学调研试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列命题中,不正确的是( )
A.对角线互相垂直的四边形是菱形B.正多边形每个内角都相等
C.对顶角相等D.矩形的两条对角线相等
2、(4分)下面四个式子中,分式为( )
A.B.C.D.
3、(4分)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,……,照这样走下去,他第一次回到出发地A点时,一共走的路程是( )
A.140米B.150米C.160米D.240米
4、(4分)在平面直角坐标系中,点(-1,2)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
5、(4分)如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为( )
(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.
A.1个B.2个C.3个D.4个
6、(4分)如图,□ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为( )
A.1B.2C.3D.4
7、(4分)关于一次函数,下列结论正确的是( )
A.随的增大而减小B.图象经过点(2,1)C.当﹥时,﹥0D.图象不经过第四象限
8、(4分)如图,在矩形中,动点从点开始沿的路径匀速运动到点停止,在这个过程中,的面积随时间变化的图象大致是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若□ABCD中,∠A=50°,则∠C=_______°.
10、(4分)已知直线与平行且经过点,则的表达式是__________.
11、(4分)在一个长6m、宽3m、高2m的房间里放进一根竹竿,竹竿最长可以是________.
12、(4分)若,时,则的值是__________.
13、(4分)如图,函数y=3x和y=ax+4的图象相交于点A(1,3),则不等式3x
14、(12分)如图,在中,,CD平分,,,E,F是垂足,那么四边形CEDF是正方形吗?说出理由.
15、(8分)某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过220kW•h时实行“基础电价”;第二档是当用电量超过220kW•h时,其中的220kW•h仍按照“基础电价”计费,超过的部分按照“提高电价”收费.设每个家庭月用电量为xkW•h时,应交电费为y元.具体收费情况如图所示,请根据图象回答下列问题:
(1)“基础电价”是 元/kw•h;
(2)求出当x>220时,y与x的函数解析式;
(3)若小豪家六月份缴纳电费121元,求小豪家这个月用电量为多少kW•h?
16、(8分)如图,平行四边形ABCD的对角线AC,BD相交于点O,AB=5,BC=1.
(1)求OD长的取值范围;
(2)若∠CBD=30°,求OD的长.
17、(10分)利用幂的运算性质计算:
18、(10分)如图,在平面直角坐标系中,直线的表达式为,点,的坐标分别为,,直线与直线相交于点.
(1)求直线的表达式;
(2)求点的坐标;
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若一个多边形的每一个内角都是144°,则这个多边形的是边数为_____.
20、(4分)将直线向下平移4个单位,所得到的直线的解析式为___.
21、(4分)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若,,则阴影部分的面积为__________.
22、(4分)如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=3,则AB的长是______.
23、(4分)菱形ABCD中,∠B=60°,AB=4,点E在BC上,CE=2,若点P是菱形上异于点E的另一点,CE=CP,则EP的长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF
(1)求证:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面积.
25、(10分)在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
(1)求证:四边形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
26、(12分)如图,点A在的边ON上,于点B,,于点E,,于点C.
求证:四边形ABCD是矩形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据菱形的判定,正多边形的性质,对顶角的性质,矩形的性质依次分析即可.
【详解】
对角线互相垂直的平行四边形是菱形,故A错误,符合题意;
正多边形每个内角都相等,故B正确,不符合题意;
对顶角相等,故C正确,不符合题意;
矩形的两条对角线相等,故D正确,不符合题意,
故选:A.
此题考查判断命题正确与否,正确掌握菱形的判定,正多边形的性质,对顶角的性质,矩形的性质是解题的关键.
2、B
【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
【详解】
A.的分母中不含有字母,因此它是整式,而不是分式,故本选项错误;
B.分母中含有字母,因此它们是分式,故本选项正确;
C.是整式,而不是分式,故本选项错误;
D.的分母中不含有字母,因此它们是整式,而不是分式.故本选项错误.
故选B.
本题考查了分式的定义,熟知一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式是解答此题的关键.
3、B
【解析】
由题意可知小华走出了一个正多边形,根据正多边形的外角和公式可求解.
【详解】
已知多边形的外角和为360°,而每一个外角为24°,可得多边形的边数为360°÷24°=15,所以小明一共走了:15×10=150米.故答案选B.
本题考查多边形内角与外角,熟记公式是关键.
4、B
【解析】
根据各象限内点的坐标特征解答即可.
【详解】
∵点(-1,2)的横坐标为负数,纵坐标为正数,
∴点(-1,2)在第二象限.
故选B.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
5、C
【解析】
仔细分析图象特征,根据横轴和纵轴的意义依次分析各小题即可作出判断.
【详解】
解:由图可得,在x=40时,速度为0,故(1)(4)正确;
AB段,y的值相等,故速度不变,故(2)正确;
x=30时,y=80,即在第30分钟时,汽车的速度是80千米/时;故(3)错误;
故选C.
本题考查实际问题的函数图象.实际问题的函数图象是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
6、B
【解析】
利用平行四边形性质得∠DAE=∠BEA,再利用角平分线性质证明△BAE是等腰三角形,得到BE=AB即可解题.
【详解】
∵四边形ABCD是平行四边形,
∴AD=BC=5,AD∥BC,
∴∠DAE=∠BEA,
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BEA=∠BAE,
∴BE=AB=3,
∴CE=BC-BE=5-3=2,
故选B.
本题考查了平行四边形的性质,等腰三角形的判定,属于简单题,熟悉平行线加角平分线得到等腰三角形这一常用解题模型是解题关键.
7、C
【解析】
分析:根据k=3>0,图象经过第一、三、四象限,y随x增大而增大即可判断A,D选项的正误;把点(2,1)代入y=3x-1即可判断函数图象不过点(2,1)可判断B选项;当3x-1>0,即x>时,y>0,可判断C选项正误.
详解:当k=3>0,图象经过第一、三、四象限,y随x增大而增大即可判断A,D选项错误;
当x=2时,y=2×2-1=3≠1,故选项B错误;
当3x-1>0,即x>时,y>0,,所以C选项正确;
故选C.
点睛:本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,图象经过第一、三象限,y随x增大而增大;当k<0,图象经过第二、四象限,y随x增大而减小;当b>0,图象与y轴的交点在x的上方;当b=0,图象经过原点;当b<0,图象与y轴的交点在x的下方.
8、B
【解析】
根据三角形的面积可知当P点在AB上时,的面积随时间变大而变大,当P点在AD上时,△PBC的面积不会发生改变,当P点在CD上时,的面积随时间变大而变小.
【详解】
解:当P点在AB上时,的面积= ,则的面积随时间变大而变大;
当P点在AD上时,的面积=,则的面积不会发生改变;
当P点在CD上时,的面积=,则的面积随时间变大而变小,且函数图象的斜率应与P点在AB上时相反;
综上可得B选项的图象符合条件.
故选B.
本题主要考查三角形的面积公式,函数图象,解此题关键在于根据题意利用三角形的面积公式分段对函数图象进行分析.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、50
【解析】
因为平行四边形的对角相等,所以∠C=50°,故答案为: 50°.
10、
【解析】
先根据两直线平行的问题得到k=2,然后把(1,3)代入y=2x+b中求出b即可.
【详解】
∵直线y=kx+b与y=2x+1平行,
∴k=2,
把(1,3)代入y=2x+b得2+b=3,解得b=1,
∴y=kx+b的表达式是y=2x+1.
故答案为:y=2x+1.
此题考查一次函数中的直线位置关系,解题关键在于求k的值.
11、1
【解析】
【分析】根据题意画出图形,首先利用勾股定理计算出BC的长,再利用勾股定理计算出AB的长即可.
【详解】如图,∵侧面对角线BC2=32+22=13,
∴CB=m,
∵AC=6m,
∴AB==1m,
∴竹竿最大长度为1m,
故答案为:1.
【点睛】本题考查了勾股定理的应用,解题的关键是画出符合题意的图形,利用数形结合的思想以及勾股定理的知识解决问题.勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
12、1
【解析】
利用平方差公式求解即可求得答案.
【详解】
解:当,时,
.
故答案为:1.
此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用是解此题的关键.
13、
【解析】
由题意结合图象可以知道,当x=1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式的解集.
【详解】
解:两个条直线的交点坐标为A(1,3),
当x<1时,
直线y=ax+4在直线y=3x的上方,
当x>1时,
直线y=ax+4在直线y=3x的下方,
故不等式3x
本题主要考查正比例函数、一次函数和一元一次不等式的知识点,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
三、解答题(本大题共5个小题,共48分)
14、是,理由见解析.
【解析】
根据,CD平分,,,可得,,根据正方形的判定定理可得:四边形CEDF是正方形.
【详解】
解:四边形CEDF是正方形,
理由:,CD平分,,,
,,
四边形CEDF是正方形,
本题主要考查正方形的判定定理,解决本题的关键是要熟练掌握正方形的判定定理.
15、(1)0.5;(2)y=0.55x﹣11;(3)小豪家这个月用电量为1kW•h.
【解析】
(1)由用电220度费用为110元可得;
(2)当x>220时,待定系数法求解可得此时函数解析式;
(3)由121>110知,可将y=121代入(2)中函数解析式求解可得.
【详解】
(1)“基础电价”是=0.5元/度,
故答案为:0.5;
(2)当x>220时,设y=kx+b,
由图象可得:,
解得,
∴y=0.55x﹣11;
(3)∵y=121>110
∴令0.55x﹣11=121,
得:x=1.
答:小豪家这个月用电量为1kW•h.
本题主要考查一次函数的图象与待定系数求函数解析式,分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,理解每个区间的实际意义是解题关键.
16、(1);(2).
【解析】
(1)根据三角形三边关系即可求解;
(2)过点D作DE⊥BC交BC延长线于点E,构建直角三角形,利用勾股定理解题即可.
【详解】
解:(1)∵四边形ABCD是平行四边形,AB=5,BC=1,
∴AB=CD=5,BC=AD=1,OD=BD,
∴在△ABD中,,
∴.
(2)过点D作DE⊥BC交BC延长线于点E,
∵∠CBD=30°,
∴DE=BD,
∵四边形ABCD是平行四边形,
∴OD=BD=DE,
设OD为x,则DE=x,BD=2x,
∴BE=,
∵BC=1,
∴CE=BE-BC=-1,
在Rt△CDE中,,
解得,,
∵BE=>BC=1,
∴不合题意,舍
∴OD=.
故答案为:(1);(2).
本题考查了平行四边形性质、三角形三边关系以及勾股定理的运用,熟练解一元二次方程是解决本题的关键.
17、4
【解析】
运用幂的运算法则进行运算即可
【详解】
本题考查幂的运算,熟练掌握幂的运算规则是集体关键
18、(1);(2)
【解析】
(1)设直线的表达式为y=kx+b,利用待定系数法即可求出直线的表达式;
(2)将直线AB的表达式和直线的表达式联立,解方程即可求出交点P坐标.
【详解】
解:(1)设直线的表达式为y=kx+b,
将点A和点B的坐标代入,得
解得:
∴直线的表达式为;
(2)将直线AB的表达式和直线的表达式联立,得
解得:
∴直线与直线的交点的坐标为
此题考查的是求一次函数的表达式和两条直线的交点坐标,掌握用待定系数法求一次函数的表达式和将两个一次函数的表达式联立求交点坐标是解决此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.
【详解】
180°-144°=36°,
360°÷36°=1,
∴这个多边形的边数是1,
故答案为:1.
本题考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.
20、
【解析】
直接根据“上加下减”的平移规律求解即可.
【详解】
将直线向下平移4个单位长度,所得直线的解析式为,即.
故答案为:.
本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.
21、40
【解析】
作出辅助线,因为△ADF与△DEF同底等高,所以面积相等,所以阴影图形的面积可解.
【详解】
如图,连接EF
∵△ADF与△DEF同底等高,
∴S =S
即S −S =S −S,
即S =S =15cm,
同理可得S =S =25cm,
∴阴影部分的面积为S +S =15+25=40cm.
故答案为40.
此题考查平行四边形的性质,解题关键在于进行等量代换.
22、
【解析】
根据平行四边形性质推出AB=CD,AB∥CD,得出平行四边形ABDE,推出DE=DC=AB,根据直角三角形性质求出CE长,即可求出AB的长.
【详解】
解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,
∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,
即D为CE中点,
∵EF⊥BC,∴∠EFC=90°,
∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,
∵EF=3,∴CE=2,∴AB=,
故答案为.
本题考查了平行四边形的性质和判定,平行线性质,勾股定理,直角三角形斜边上中线性质,含30度角的直角三角形性质等知识点的应用,此题综合性比较强,是一道比较好的题目.
23、1或2或3﹣.
【解析】
连接EP交AC于点H,依据菱形的性质可得到∠ECH=∠PCH=10°,然后依据SAS可证明△ECH≌△PCH,则∠EHC=∠PHC=90°,最后依据PE=EH求解即可.
【详解】
解:如图所示:连接EP交AC于点H.
∵菱形ABCD中,∠B=10°,
∴∠BCD=120°,∠ECH=∠PCH=10°.
在△ECH和△PCH中 ,
∴△ECH≌△PCH.
∴∠EHC=∠PHC=90°,EH=PH.
∴OC=EC=.
∴EH=3,
∴EP=2EH=1.
如图2所示:当P在AD边上时,△ECP为等腰直角三角形,则 .
当P′在AB边上时,过点P′作P′F⊥BC.
∵P′C=2,BC=4,∠B=10°,
∴P′C⊥AB.
∴∠BCP′=30°.
∴ .
∴ .
故答案为1或2或3﹣.
本题主要考查的是菱形的性质,熟练掌握菱形的性质是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
(1)由矩形的性质得出OA=OC,OB=OD,AC=BD,∠ABC=90°,证出OE=OF,由SAS证明△AOE≌△COF,即可得出AE=CF;
(2)证出△AOB是等边三角形,得出OA=AB=6,AC=2OA=12,在Rt△ABC中,由勾股定理求出BC的长,即可得出矩形ABCD的面积.
【详解】
(1)证明:∵四边形ABCD是矩形,
∴OA=OC,OB=OD,AC=BD,∠ABC=90°,
∵BE=DF,∴OE=OF,
在△AOE和△COF中,∵OA=OC,∠AOE=∠COF,OE=OF,
∴△AOE≌△COF(SAS),∴AE=CF;
(2)解:∵OA=OC,OB=OD,AC=BD,
∴OA=OB,
∵∠AOB=∠COD=60°,
∴△AOB是等边三角形,∴OA=AB=6,
∴AC=2OA=12,
在Rt△ABC中,BC==6,
∴矩形ABCD的面积=AB•BC=6×6=36.
25、(1)见解析(2)见解析
【解析】
试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;
(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.
试题分析:(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD.
∵BE∥DF,BE=DF,
∴四边形BFDE是平行四边形.
∵DE⊥AB,
∴∠DEB=90°,
∴四边形BFDE是矩形;
(2)∵四边形ABCD是平行四边形,
∴AB∥DC,
∴∠DFA=∠FAB.
在Rt△BCF中,由勾股定理,得
BC===5,
∴AD=BC=DF=5,
∴∠DAF=∠DFA,
∴∠DAF=∠FAB,
即AF平分∠DAB.
【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.
26、详见解析
【解析】
根据全等三角形的判定和性质以及矩形的判定解答即可;
【详解】
证明:(证法不唯一)∵于点B,于点E,
∴.
在与中,
∵
∴.
∴,
∴.
又∵,,
∴.
∴四边形ABCD是平行四边形.
∵,
∴四边形ABCD是矩形.
此题考查了矩形的判定与性质以及勾股定理.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024-2025学年江苏省盐城市建湖县数学九上开学调研试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省盐城市第一初级中学数学九年级第一学期开学达标测试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省盐城市初级中学数学九年级第一学期开学统考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。