2024-2025学年湖南省岳阳市汨罗市沙溪中学九年级数学第一学期开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,矩形ABCD中,对角线AC,BD相交于点O,下列结论不一定成立的是
A.
B.
C.
D.
2、(4分)如图,在平行四边形ABCD中,∠A=40°,则∠C大小为( )
A.40°B.80°C.140°D.180°
3、(4分)若,则的值为( )
A.1B.-1C.-7D.7
4、(4分)在中,若,则( )
A.B.C.D.
5、(4分)下列地铁标志图形中,属于中心对称图形的是( )
A.B.C.D.
6、(4分)与可以合并的二次根式是( )
A.B.C.D.
7、(4分)若平行四边形中两个内角的度数比为1:2,则其中较小的内角是( )。
A.60°B.90°C.120°D.45°
8、(4分)如图,在长方形中,绕点旋转,得到,使,,三点在同一条直线上,连接,则是( )
A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,以Rt△ABC的斜边AB为一边在△ABC同侧作正方形ABEF.点O为AE与BF的交点,连接CO.若CA=2,CO=,那么CB的长为________.
10、(4分)如图,在中,已知,,分别为,,的中点,且,则图中阴影部分的面积等于__.
11、(4分)若把分式中的x,y都扩大5倍,则分式的值____________.
12、(4分) “m2是非负数”,用不等式表示为___________.
13、(4分)已知菱形的两条对角线长为8cm和6cm,那么这个菱形的周长是______cm,面积是______cm1.
三、解答题(本大题共5个小题,共48分)
14、(12分)为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:
(1)求被抽样调查的学生有多少人?并补全条形统计图;
(2)每天户外活动时间的中位数是 小时?
(3)该校共有1850名学生,请估计该校每天户外活动时间超过1小时的学生有多少人?
15、(8分)我们都知道在中国象棋中,马走日,象走田,如图所示,假设一匹马经过A、B两点走到点C,请问点A 、B在不在马的起始位置所在的点与点C所确定的直线上?请说明你的理由.
16、(8分)上午6:00时,甲船从M港出发,以80和速度向东航行。半小时后,乙船也由M港出发,以相同的速度向南航行。上午8:00时,甲、乙两船相距多远?要求画出符合题意的图形.
17、(10分)如图,两块大小不等的等腰直角三角形按图1放置,点为直角顶点,点在上,将绕点顺时针旋转角度,连接、.
(1)若,则当 时,四边形是平行四边形;
(2)图2,若于点,延长交于点,求证:是的中点;
(3)图3,若点是的中点,连接并延长交于点,求证:.
18、(10分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).
根据上述信息,解答下列各题:
×
(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;
(2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;
(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).
根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)用换元法解方程时,如果设,那么所得到的关于的整式方程为_____________
20、(4分)函数的自变量的最大值是______.
21、(4分)颖颖同学用20元钱去买方便面35包,甲种方便面每包0.7元,乙种方便面每包0.5元,则她最多可买甲种方便面_____包.
22、(4分)若,则_______(填不等号).
23、(4分)函数y=中,自变量x的取值范围是___________.
二、解答题(本大题共3个小题,共30分)
24、(8分)阅读下面材料:数学课上,老师出示了这祥一个问题:
如图,在正方形ABCD中,点F在AB上,点E在BC延长线上。且AF=CE,连接EF,过点D作DH⊥FE于点H,连接CH并延长交BD于点0,∠BFE=75°.求的值.某学习小组的同学经过思考,交流了自己的想法:
小柏:“通过观察和度量,发现点H是线段EF的中点”。
小吉:“∠BFE=75°,说明图形中隐含着特殊角”;
小亮:“通过观察和度量,发现CO⊥BD”;
小刚:“题目中的条件是连接CH并延长交BD于点O,所以CO平分∠BCD不是己知条件。不能由三线合一得到CO⊥BD”;
小杰:“利用中点作辅助线,直接或通过三角形全等,就能证出CO⊥BD,从而得到结论”;……;
老师:“延长DH交BC于点G,若刪除∠BFB=75°,保留原题其余条件,取AD中点M,连接MH,如果给出AB,MH的值。那么可以求出GE的长度”.
请回答:(1)证明FH=EH;
(2)求的值;
(3)若AB=4.MH=,则GE的长度为_____________.
25、(10分)杨梅是漳州的特色时令水果.杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价每件比第一批多了5元.
(1)第一批杨梅每件进价多少元?
(2)老板以每件150元的价格销售第二批杨梅,售出后,为了尽快售完,决定打折促销.要使得第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折(利润售价进价)?
26、(12分)因式分解= __________________
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据矩形性质进行判断:矩形的两条对角线相等,4个角是直角等.
【详解】
根据矩形性质, ,,只有D说法不正确的.
故选D
本题考核知识点:矩形性质. 解题关键点:熟记矩形性质.
2、A
【解析】
由平行四边形的性质:对角相等,得出∠C=∠A.
【详解】
解:∵四边形ABCD是平行四边形,
∴∠C=∠A=40°,
故选A.
本题考查了平行四边形的性质,解答本题的关键是掌握平行四边形的对角相等.
3、D
【解析】
首先根据非负数的性质,可列方程组求出x、y的值,进而可求出x-y的值.
【详解】
由题意,得:,
解得;
所以x-y=4-(-3)=7;
故选:D.
此题主要考查非负数的性质:非负数的和为1,则每个非负数必为1.
4、A
【解析】
根据平行四边形的性质可得出,,因此,,即可得出答案.
【详解】
解:根据题意可画出示意图如下:
∵四边形ABCD是平行四边形,
∴,
∴,
∵,
∴,
∴.
故选:A.
本题考查的知识点是平行四边形的性质,属于基础题目,易于理解掌握.
5、C
【解析】
根据中心对称图形的定义即可作出判断.
【详解】
A、不是中心对称图形,故选项错误;
B、不是中心对称图形,故选项错误;
C、是中心对称图形,故选项正确;
D、不是中心对称图形,故选项错误.
故选C.
本题主要考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后两部分重合.
6、C
【解析】
将各选项中的二次根式化简,被开方数是5的根式即为正确答案.
【详解】
解:A.与不是同类二次根式,不可以合并,故本选项错误;
B.与不是同类二次根式,不可以合并,故本选项错误;
C.=2,故与是同类二次根式,故本选项正确;
D.=5,故与不是同类二次根式,故本选项错误.
故选C.
本题考查了同类二次根式的定义,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.
7、A
【解析】
首先设平行四边形中两个内角的度数分别是x°,2x°,由平行四边形的邻角互补,即可得方程x+2x=180,继而求得答案.
【详解】
设平行四边形中两个内角的度数分别是x°,2x°,
则x+2x=180,
解得:x=60,
∴其中较小的内角是:60°.
故选A.
此题考查平行四边形的性质,解题关键在于利用平行四边形的邻角互补.
8、D
【解析】
证明∠GAE=90°,∠EAB=90°,根据旋转的性质证得AF=AC,∠FAE=∠CAB,得到∠FAC=∠EAB=90°,即可解决问题.
【详解】
解:∵四边形AGFE为矩形,
∴∠GAE=90°,∠EAB=90°;
由题意,△AEF绕点A旋转得到△ABC,
∴AF=AC;∠FAE=∠CAB,
∴∠FAC=∠EAB=90°,
∴△ACF是等腰直角三角形.
故选:D.
本题主要考查了旋转的性质和等腰三角形的定义,解题的关键是灵活运用旋转的性质来分析、判断、解答.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、+2
【解析】
如图,在BC上截取BD=AC=2,连接OD,
∵四边形AFEB是正方形,
∴AO=BO,∠AOB=∠ACB=90°,
∴∠CAO=90°-∠ACH,∠DBO=90°-∠BHO,
∵∠ACH=∠BHO,
∴∠CAO=∠DBO,
∴△ACO≌△BDO,
∴DO=CO=,∠AOC=∠BOD,
∵∠BOD+∠AOD=90°,
∴∠AOD+∠AOC=90°,即∠COD=90°,
∴CD=,
∴BC=BD+CD=.
故答案为:.
点睛:本题的解题要点是,通过在BC上截取BD=AC,并结合已知条件证△ACO≌△BDO来证得△COD是等腰直角三角形,这样即可求得CD的长,从而使问题得到解决.
10、2
【解析】
E是AD的中点S△BDE=S△ABD,S△CDE=S△ACDS△BCE=S△ABC=4;
F为CE中点S△BEF=S△BCE=.
【详解】
解:∵E是AD的中点,∴S△BDE=S△ABD,S△CDE=S△ACD,∴S△BDE + S△CDE =S△ABC= (cm2),即S△BCE=4(cm2). ∵F为CE中点,∴S△BEF=S△BCE=(cm2).故答案为2.
本题主要考查了三角形中线的性质,熟知三角形的中线将三角形分成面积相等的两部分是解题关键.
11、扩大5倍
【解析】
【分析】把分式中的x和y都扩大5倍,分别用5x和5y去代换原分式中的x和y,利用分式的基本性质化简即可.
【详解】把分式中的x,y都扩大5倍得:
=,
即分式的值扩大5倍,
故答案为:扩大5倍.
【点睛】本题考查了分式的基本性质,根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项.
12、≥1
【解析】
根据非负数即“≥1”可得答案.
【详解】
解:“m2是非负数”,用不等式表示为m2≥1,
故答案为:m2≥1.
本题主要主要考查由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的不等关系.
13、10,14
【解析】
解:∵菱形的两条对角线长为8cm和6cm,∴菱形的两条对角线长的一半分别为4cm和3cm,根据勾股定理,边长==5cm,所以,这个菱形的周长是5×4=10cm,面积=×8×6=14cm1.故答案为10,14.
点睛:本题考查了菱形的性质,熟练掌握菱形的对角线互相垂直平分是解题的关键,另外,菱形的面积可以利用底乘以高,也可以利用对角线乘积的一半求解.
三、解答题(本大题共5个小题,共48分)
14、(1)被调查的学生有500人,补全的条形统计图详见解析;(2)1;(3)该校每天户外活动时间超过1小时的学生有740人.
【解析】
试题分析:(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数,从而可以将条形统计图补充完整;(2)根据条形统计图可以得到这组数据的中位数;(3)根据条形统计图可以求得校共有1850名学生,该校每天户外活动时间超过1小时的学生有多少人.
试题解析:解:(1)由条形统计图和扇形统计图可得,
0.5小时的有100人占被调查总人数的20%,
故被调查的人数有:100÷20%=500,
1小时的人数有:500﹣100﹣200﹣80=120,
即被调查的学生有500人,补全的条形统计图如下图所示,
(2)由(1)可知被调查学生500人,由条形统计图可得,中位数是1小时,
(3)由题意可得,
该校每天户外活动时间超过1小时的学生数为:=740人,
即该校每天户外活动时间超过1小时的学生有740人.
考点:中位数;用样本估计总体;扇形统计图;条形统计图.
15、在,理由见解析.
【解析】
以B为原点,建立直角坐标系,求出直线BC的解析式,再讲A点坐标代入解析式就可以得出结论.
【详解】
点A、B、C在一条直线上.
如图,以B为原点,建立直角坐标系,
A(-1,-1),C(1,1).
设直线BC 的解析式为:y=kx,由题意,得
1=k,
∴y=1x.
∵x=-1时,
∴y=-1.
∴A(-1,-1)在直线BC上,
∴点A、B、C在一条直线上.
本题考查了平面直角坐标系的运用,待定系数法求一次函数的解析式的运用,由自变量的值确定函数值的运用,解答时建立平面直角坐标系求出函数的解析式是关键.
16、两船相距200,画图见解析.
【解析】
根据题意画出图形,利用勾股定理求解即可.
【详解】
解:如图所示,
∵甲船从港口出发,以80的速度向东行驶,
∴MA=80×2=160(km),
∵半个小时后,乙船也由同一港口出发,以相同的速度向南航行,
∴MB=80×1.5=120(km),
∴(km),
∴上午8:00时,甲、乙两船相距200km.
本题考查的是勾股定理的应用,根据题意画出图形,利用数形结合求解是解答此题的关键.
17、(1)时,四边形是平行四边形;(2)见解析;(3)见解析.
【解析】
(1)当AC∥DE时,因为AC=DE,推出四边形ACDE是平行四边形,利用平行四边形的性质即可解决问题.
(2)如图2中,作DM⊥FM于M,BN⊥FM交FM的延长线于N.利用全等三角形的性质证明BN=DM,再证明△BNG≌△DMG(AAS)即可解决问题.
(3)如图3中,延长CM到K,使得MK=CM,连接AK.KM.想办法证明△BCD≌△CAK(SAS),即可解决问题.
【详解】
(1)解:如图1-1中,连接AE.
当AC∥DE时,∵AC=DE,
∴四边形ACDE是平行四边形,
∴∠ACE=∠CED,
∵CE=CD,∠ECD=90°,
∴∠CED=1°,
∴α=∠ACE=1°.
故答案为1.
(2)证明:如图2中,作DM⊥FM于M,BN⊥FM交FM的延长线于N.
∵CF⊥AE,DM⊥FM,
∴∠CFE=∠CMD=∠ECD=90°,
∴∠ECF+∠CEF=90°,∠ECF+∠DCM=90°,
∴∠CEF=∠DCM,∵CE=CD,
∴△CFE≌△DMC(AAS),
∴DM=CF,
同法可证:CF=BN,
∴BN=DM,
∵BN⊥FM,
∴∠N=∠DMG=90°,
∵∠BGN=∠DGM,
∴△BNG≌△DMG(AAS),
∴BG=DG,
∴点G是BD的中点.
(3)证明:如图3中,延长CM到K,使得MK=CM,连接AK.KM.
∵AM-ME,CM=MK,
∴四边形ACEK是平行四边形,
∴AK=CE=CD,AK∥CE,
∴∠KAC+∠ACE=180°,
∵∠ACE+∠BCD=180°,
∴∠BCD=∠KAC,
∵CA=CB,CD=AK,
∴△BCD≌△CAK(SAS),
∵∠ACK=∠CBD,
∵∠ACK+∠BCN=90°,
∴∠CBD+∠BCN=90°,
∴∠CNB=90°,
∴CN⊥BD.
本题属于四边形综合题,考查了等腰直角三角形的性质,平行四边形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题
18、(1)20,1;(2)2人;(1)男生比女生的波动幅度大.
【解析】
(1)将柱状图中的女生人数相加即可求得总人数,中位数为第10与11名同学的次数的平均数.
(2)先求出该班女生对“两会”新闻的“关注指数”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可.
(1)比较该班级男、女生收看“两会”新闻次数的波动大小,需要求出女生的方差.
【详解】
(1)该班级女生人数是2+5+6+5+2=20,女生收看“两会”新闻次数的中位数是1.
故答案为20,1.
(2)由题意:该班女生对“两会”新闻的“关注指数”为=65%,所以,男生对“两会”新闻的“关注指数”为60%.设该班的男生有x人,则=60%,解得:x=2.
答:该班级男生有2人.
(1)该班级女生收看“两会”新闻次数的平均数为=1,女生收看“两会”新闻次数的方差为:=.
∵2>,∴男生比女生的波动幅度大.
本题考查了平均数,中位数,方差的意义.解题的关键是明确平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
可根据方程特点设,则原方程可化为-y=1,再去分母化为整式方程即可.
【详解】
设,则原方程可化为:-y=1,
去分母,可得1-y2=y,
即y2+y-1=1,
故答案为:y2+y-1=1.
本题考查用换元法解分式方程的能力.用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,再将分式方程可化为整式方程.
20、1
【解析】
根据二次根式的性质,被开方数大于等于0可知:1-x≥0,解得x的范围即可得出x的最大值.
【详解】
根据题意得:1-x≥0,
解得:x≤1,
∴自变量x的最大值是1,
故答案为1.
本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(1)当函数表达式是二次根式时,被开方数为非负数.
21、1
【解析】
设可购买甲种方便面x包,则可购买乙种方便面(35﹣x)包,根据总价=单价×数量结合总价不超过20元,即可得出关于x的一元一次不等式,解之取其中的最大整数是解题的关键.
【详解】
设可购买甲种方便面x包,则可购买乙种方便面(35﹣x)包,
根据题意得:0.7x+0.5(35﹣x)≤20,
解得:x≤1.5,
∵x为整数,
∴x=1.
故答案为1.
本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.
22、<
【解析】
试题分析:根据不等式的基本性质3,直接求解得a<b.
故答案为<
23、且x≠−1.
【解析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,列不等式求解.
【详解】
根据题意,可得
且x+1≠0;
解得且x≠−1.
故答案为且x≠−1.
考查函数自变量的取值范围,熟练掌握分式有意义的条件,二次根式有意义的条件是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2) ;(3)
【解析】
(1)如图1,连接DE,DF,证明△DAF≌△DCE(SAS)即可解决问题;
(2)如图2,连接BH,先证出BH=EF,再证ΔBHC≌ΔDHC,得到∠HOB=90°,OC⊥BD,∠HBO=30°,得出OH=BH,即可解决问题;
(3)如图3,连接OA,作MK⊥OA于K.首先证明OH=HC,利用平行线分线段成比例定理求出CG,再利用相似三角形的性质解决问题即可.
【详解】
(1)如图1,
连接DE,DF
∵正方形ABCD
∴AD=CD=CB=AB
∠A=∠ADC=∠BCD=∠ABC=90°
∴∠DCE=∠A=90°
∴在ΔFAD和ΔECD中
∴ΔDAF≌ΔDCE(SAS)
∴DF=DE
∵DH⊥EF
∴FH=EH
(2)如图2,连接BH,
∵ΔFAD≌ΔECD
∴∠ADF=∠CDE
∵∠ADC=90°=∠ADF+∠FDC
∴∠EDC+∠FDC=90°
∴∠FDE=90°
∴DH=EF=EH=FH
∵∠FBC=90°
∴BH=EF=EH=FH
∴BH=DH
∴在ΔBHC和ΔDHC中
∴ΔBHC≌ΔDHC(SSS)
∴∠BCH=∠DCH
∴OC⊥BD
∴∠HOB=90°
∵BH=FH,∠BFE =75°
∴∠FBH=∠BFH=75°
∵正方形ABCD
∴∠ABD=45°,∠HBO=30°
∴OH=BH
∴;
(3)解:如图3,连接OA,作MK⊥OA于K.
由(2)可知:A,O,C共线,
∴∠MAK=45°,
∵AM=MB=2,
∵CG∥AB,
由△EHG∽△BCG,可得
本题属于四边形综合题,考查了正方形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.
25、(1)120元(2)至少打7折.
【解析】
(1)设第一批杨梅每件进价是x元,则第二批每件进价是(x+5)元,再根据等量关系:第二批杨梅所购件数是第一批的2倍;
(2)设剩余的杨梅每件售价y元,由利润=售价-进价,根据第二批的销售利润不低于320元,可列不等式求解.
【详解】
解:(1)设第一批杨梅每件进价是x元,
则
解得
经检验,x=120是原方程的解且符合题意.
答:第一批杨梅每件进价为120元.
(2)设剩余的杨梅每件售价打y折.
则
解得y≥7.
答:剩余的杨梅每件售价至少打7折.
考查分式方程的应用, 一元一次不等式的应用,读懂题目,从题目中找出等量关系以及不等关系是解题的关键.
26、(x+1)1(x-1)1.
【解析】
首先利用平方差公式分解因式,进而利用完全平方公式分解因式得出即可.
【详解】
解:(x1+4)1-16x1
=(x1+4+4x)(x1+4-4x)
=(x+1)1(x-1)1.
故答案为:(x+1)1(x-1)1.
本题考查公式法分解因式,熟练应用乘法公式是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
统计量
平均数(次)
中位数(次)
众数(次)
方差
…
该班级男生
…
湖南省汨罗市沙溪中学2023-2024学年九上数学期末学业质量监测试题含答案: 这是一份湖南省汨罗市沙溪中学2023-2024学年九上数学期末学业质量监测试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2023-2024学年湖南省岳阳市汨罗市沙溪中学九年级数学第一学期期末预测试题含答案: 这是一份2023-2024学年湖南省岳阳市汨罗市沙溪中学九年级数学第一学期期末预测试题含答案,共7页。
2023-2024学年湖南省汨罗市沙溪中学八上数学期末学业质量监测试题含答案: 这是一份2023-2024学年湖南省汨罗市沙溪中学八上数学期末学业质量监测试题含答案,共6页。试卷主要包含了答题时请按要求用笔,小明同学把自己的一副三角板,将变形正确的是等内容,欢迎下载使用。