2024-2025学年湖南省娄底市娄星区数学九上开学调研模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)分式可变形为( )
A.B.-C.D.
2、(4分)甲、乙、丙、丁四名射击选手,在相同条件下各射靶10次,他们的成绩统计如下表所示,
若要从他们中挑选一位成绩最高且波动较小的选手参加射击比赛,那么一般应选( )
A.甲B.乙C.丙D.丁
3、(4分)如表是某公司员工月收入的资料.
能够反映该公司全体员工月收入水平的统计量是( )
A.平均数和众数B.平均数和中位数C.中位数和众数D.平均数和方差
4、(4分)菱形的两条对角线长为6 cm 和8 cm,那么这个菱形的周长为
A.40 cmB.20 cmC.10 cmD.5 cm
5、(4分)已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,下列说法正确的是( )
A.y1<y2B.y1>y2C.y1=y2D.不能确定
6、(4分)方程的解为( ).
A.2B.1C.-2D.-1
7、(4分)若二次根式有意义,则x的取值范围是( )
A.B.C.D.
8、(4分)点在反比例函数的图像上,则的值为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,四边形 ABCD 中,E、F、G、H 分别为各边的中点,顺次连 结 E、F、G、H,把四边形 EFGH 称为中点四边形.连结 AC、BD,容易证明:中点 四边形 EFGH 一定是平行四边形.
(1)如果改变原四边形 ABCD 的形状,那么中点四边形的形状也随之改变,通过探索 可以发现:当四边形 AB CD 的对角线满足 AC=BD 时,四边形 EFGH 为菱形;当四边形ABCD 的对角线满足 时,四边形 EFGH 为矩形;当四边形 ABCD 的对角线满足 时,四边形 EFGH 为正方形.
(2)试证明:S△AEH+S△CFG= S□ ABCD
(3)利用(2)的结论计算:如果四边形 ABCD 的面积为 2012, 那么中点四边形 EFGH 的面积是 (直接将结果填在 横线上)
10、(4分)如图所示,已知ABCD中,下列条件:①AC=BD;②AB=AD;③∠1=∠2;④AB⊥BC中,能说明ABCD是矩形的有______________(填写序号)
11、(4分)如图,在△ABC中,∠ABC=90°,∠ACB=30°,D是BC上的一点,且知AC=20,CD=10﹣6,则AD=_____.
12、(4分)在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则关于x的一元一次不等式kx<﹣x+3的解集是_____.
13、(4分)在平面直角坐标xOy中,点O是坐标原点,点B的坐标是(m,m-4),则OB的最小值是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.
(1)求证:BF=CD;
(2)连接BE,若BE⊥AF,∠F=60°,,求的长.
15、(8分)如图,中,.
(1)请用尺规作图的方法在边上确定点,使得点到边的距离等于的长;(保留作用痕迹,不写作法)
(2)在(1)的条件下,求证:.
16、(8分)先化简,再求值:先化简÷(﹣x+1),然后从﹣2<x<的范围内选取一个合适的整数作为x的值代入求值.
17、(10分)先化简,再求值:÷(a+),其中a=﹣1.
18、(10分)某景区的水上乐园有一批人座的自划船,每艘可供至位游客乘坐游湖,因景区加大宣传,预计今年游客将会增加.水上乐园的工作人员在去年月日一天出租的艘次人自划船中随机抽取了艘,对其中抽取的每艘船的乘坐人数进行统计,并制成如下统计图.
(1)求扇形统计图中, “乘坐1人”所对应的圆心角度数;
(2)估计去年月日这天出租的艘次人自划船平均每艘船的乘坐人数;
(3)据旅游局预报今年月日这天该景区可能将增加游客300人,请你为景区预计这天需安排多少艘4人座的自划船才能满足需求.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知分式,当x__________时,分式无意义?当x____时,分式的值为零?当x=-3时,分式的值为_____________.
20、(4分)如图,平行四边形AOBC中,对角线交于点E,双曲线(k>0)经过A,E两点,若平行四边形AOBC的面积为24,则k=____.
21、(4分)已知函数关系式:,则自变量x的取值范围是 ▲ .
22、(4分)如图,在菱形ABCD中,已知DE⊥AB,AE:AD=3:5,BE=2,则菱形ABCD的面积是_______.
23、(4分)一个矩形的长比宽多1cm,面积是132cm2,则矩形的长为________cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知关于x的方程x1﹣(1k+1)x+k1﹣1=0有两个实数根x1,x1.
(1)求实数k的取值范围;
(1)若方程的两个实数根x1,x1满足,求k的值.
25、(10分)某商场推出两种优惠方法,甲种方法:购买一个书包赠送一支笔;乙种方法:购买书包和笔一律按九折优惠,书包20元/个,笔5元/支,小明和同学需购买4个书包,笔若干(不少于4支).
(1)分别写出两种方式购买的费用y(元)与所买笔支数x(支)之间的函数关系式;
(2)比较购买同样多的笔时,哪种方式更便宜;
(3)如果商场允许可以任意选择一种优惠方式,也可以同时用两种方式购买,请你就购买4个书包12支笔,设计一种最省钱的购买方式.
26、(12分)某校为了改善办公条件,计划从厂家购买A、B两种型号电脑。已知每台A种型号电脑价格比每台B种型号电脑价格多0.1万元,且用10万元购买A种型号电脑的数量与用8万元购买B种型号电脑的数量相同.
(1)求A、B两种型号电脑每台价格各为多少万元?
(2)学校预计用不多于9.2万元的资金购进这两种电脑共20台,则最多可购买A种型号电脑多少台?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据分式的基本性质进行判断.
【详解】
A. 分子、分母同时除以−1,则原式=,故本选项错误;
B. 分子、分母同时除以−1,则原式=,故本选项错误;
C. 分子、分母同时除以−1,则原式=,故本选项错误;
D. 分子、分母同时除以−1,则原式=,故本选项正确.
故选:D.
此题考查分式的基本性质,解题关键在于掌握运算法则.
2、B
【解析】
∵乙、丁的平均数都是9.5,乙的方差是4,丁的方差是5.4,
∴S2乙> S2丁,
∴射击成绩最高且波动较小的选手是乙;
故选:B.
3、C
【解析】
求出数据的众数和中位数,再与25名员工的收入进行比较即可.
【详解】
该公司员工月收入的众数为3300元,在25名员工中有13人这此数据之上,
所以众数能够反映该公司全体员工月收入水平;
因为公司共有员工1+1+1+3+6+1+11+1=25人,
所以该公司员工月收入的中位数为3400元;
由于在25名员工中在此数据及以上的有13人,
所以中位数也能够反映该公司全体员工月收入水平;
故选C.
此题考查了众数、中位数,用到的知识点是众数、中位数的定义,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数,众数即出现次数最多的数据.
4、B
【解析】
∵菱形的两条对角线长为6 cm 和8 cm,∴AO=4cm,BO=3cm.
,
∴这个菱形的周长为5×4=20cm.
故选B.
5、B
【解析】
先根据题意判断出一次函数的增减性,再根据x1<x1即可得出结论.
【详解】
∵一次函数y=kx中,k<0,
∴函数图象经过二、四象限,且y随x的增大而减小,
∵x1<x1,
∴y1>y1.
故选A.
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
6、A
【解析】
试题解析:本题首先进行去分母,然后进行解关于x的一元一次方程,从而求出答案,最后必须要对这个解进行检验.在方程的两边同时乘以x(x+1)可得:2(x+1)=3x,解得:x=2,经检验:x=2是方程的解.
7、C
【解析】
根据二次根式有意义的条件“被开方数大于或等于0”进行求解即可.
【详解】
∵二次根式有意义,
∴,
∴,
故选:C.
本题主要考查了二次根式的性质,熟练掌握相关概念是解题关键.
8、B
【解析】
把点M代入反比例函数中,即可解得K的值.
【详解】
解:∵点在反比例函数的图像上,
∴,解得k=3.
本题考查了用待定系数法求函数解析式,正确代入求解是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、;(2)详见解析;(3)1
【解析】
(1)若四边形EFGH为矩形,则应有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故应有AC⊥BD;若四边形EFGH为正方形,同上应有AC⊥BD,又应有EH=EF,而EF=AC,EH=BD,故应有AC=BD.
(2)由相似三角形的面积比等于相似比的平方求解.
(3)由(2)可得S▱EFGH=S四边形ABCD=1
【详解】
(1)解:若四边形EFGH为矩形,则应有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故应有AC⊥BD;
若四边形EFGH为正方形,同上应有AC⊥BD,又应有EH=EF,而EF= AC,EH=BD,故应有AC=BD;
(2)S△AEH+S△CFG=S四边形ABCD
证明:在△ABD中,
∵EH=BD,
∴△AEH∽△ABD.
∴=()2=
即S△AEH=S△ABD
同理可证:S△CFG=S△CBD
∴S△AEH+S△CFG=(S△ABD+S△CBD)=S四边形ABCD;
(3)解:由(2)可知S△AEH+S△CFG=(S△ABD+S△CBD)=S四边形ABCD,
同理可得S△BEF+S△DHG=(S△ABC+S△CDA)=S四边形ABCD,
故S▱EFGH=S四边形ABCD=1.
本题考查了三角形的中位线的性质及特殊四边形的判定和性质,相似三角形的性质.
10、①④
【解析】
矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形,由此可得能使平行四边形ABCD是矩形的条件是①和④.
11、1
【解析】
根据直角三角形的性质求出AB,根据勾股定理求出BC,计算求出BD,根据勾股定理计算即可.
【详解】
解:∵∠ABC=90°,∠ACB=30°,
∴AB=AC=10,
由勾股定理得,BC=,
∴BD=BC﹣CD=6,
∴AD=,
故答案为:.
本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
12、x<1
【解析】
观察图象即可得不等式kx<-x+3的解集是x<1.
点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系,会利用数形结合思想是解决本题的关键.
13、
【解析】
利用勾股定理可用m表示出OB的长,根据平方的非负数性质即可得答案.
【详解】
∵点B的坐标是(m,m-4),
∴OB==,
∵(m-2)2≥0,
∴2(m-2)2+8≥8,
∴的最小值为=,即OB的最小值为,
故答案为:
本题考查勾股定理的应用及平方的非负数性质,熟练掌握平方的非负数性质是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析(2)3
【解析】
试题分析:(1)已知四边形ABCD为平行四边形,根据平行四边形的性质可得AB=CD,AD∥BC,所以∠F=∠1.再由AF平分∠BAD,可得∠2=∠1.所以∠F=∠2,根据等腰三角形的判定可得AB=BF,即可得BF=CD;(2)先判定△BEF为Rt△,在Rt△BEF即可求解.
试题解析:
(1)证明:∵ 四边形ABCD为平行四边形,
∴ AB=CD,AD∥BC.
∴∠F=∠1.
又∵ AF平分∠BAD,
∴∠2=∠1.
∴∠F=∠2.
∴AB=BF.
∴BF=CD.
(2)解:∵AB=BF,∠F=60°,
∴△ABF为等边三角形.
∵BE⊥AF,∠F=60°,
∴∠BEF=90°,∠3=30°.
在Rt△BEF中,设,则,
∴.
∴.
∴AB=BF=3.
15、(1)见解析;(2)见解析.
【解析】
(1)作出∠ABC的角平分线BM交线段AC于P,利用角平分线上的点到角的两边的距离相等可知点P即为所求;
(2)过点P作PN⊥BC,交BC于点N,通过证明≌得到AB=BN,且易得PN=NC,由BC=BN+NC,等线段转化即可得证.
【详解】
解:(1)如图:利用尺规作图,作出∠ABC的角平分线BM交线段AC于P,则点到边的距离等于的长;
(2)如图,过点P作PN⊥BC,交BC于点N,由(1)可知:PA=PN,
在和中,
,
∴≌(HL),
∴AB=BN,
∵,
∴∠C=45°,
又∵∠PNC=90°
∴∠NPC=∠C=45°,
∴PN=NC,
∴BC=BN+NC=AB+PN=AB+AP.
本题主要考查了利用尺规作图作一个角的角平分线,角平分线的性质及直角三角形全等的判定.熟练掌握角平分线的性质是解决本题的关键.
16、﹣,﹣.
【解析】
根据分式的减法和除法可以化简题目中的式子,然后在-2< x<中选取一个使得原分式有意义的整数值代入化简后的式子即可求出最后答案,值得注意的是,本题答案不唯一,x的值可以取-2、2中的任意一个.
【详解】
原式====,∵-2< x<(x为整数)且分式要有意义,所以x+1≠0,x-1≠0,x≠0,即x≠-1,1,0,因此可以选取x=2时,此时原式=-.
本题主要考查了求代数式的值,解本题的要点在于在化解过程中,求得x的取值范围,从而再选取x=2得到答案.
17、,
【解析】
先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算.
【详解】
解:
将代入上式有
原式=.
故答案为:;.
本题主要考查了分式的化简求值和二次根式的运算,其中熟练掌握分式混合运算法则是解题的关键.
18、(1)18°;(2)3;(3)250
【解析】
(1)首先计算“乘坐1人”的百分比,在利用圆周角计算“乘坐1人”所对应的圆心角度数.
(2)首先计算出总人数,再利用平均法计算每艘的人数.
(3)根据平均值估算新增加人数需要的船数.
【详解】
解:(1)“乘坐1人”所对应的圆心角度数是:
(2)估计去年月日这天出租的艘次人自划船平均每艘船的乘坐人数是:
人
(3)艘4人座的自划船才能满足需求.
本题主要考查扇形统计图的计算,关键在于一一对应的关系,是考试的热点问题,必须熟练掌握.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、 -5
【解析】
根据分式无意义的条件是分母为0可得第一空,根据分子为0,分母不为0时分式的值为0可得第二空,将的值代入分式中即可求值,从而得出第三空的答案.
【详解】
根据分式无意义的条件可知,当时,分式无意义,此时;
根据分式的值为0的条件可知,当时,分式的值为0,此时;
将 x的值代入分式中,得;
故答案为: .
本题主要考查分式无意义,分式的值为0以及分式求值,掌握分式无意义,分式的值为0的条件是解题的关键.
20、1
【解析】
解:设A(x,),B(a,0),过A作AD⊥OB于D,EF⊥OB于F,如图,
由平行四边形的性质可知AE=EB,
∴EF为△ABD的中位线,
由三角形的中位线定理得:EF=AD=,DF=(a-x),OF=,
∴E(,),
∵E在双曲线上,
∴=k,
∴a=3x,
∵平行四边形的面积是24,
∴a•=3x•=3k=24,解得:k=1.
故答案为:1.
21、
【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须。
22、20
【解析】
先由线段比求出AE,AB,AD,再由勾股定理求出DE,根据面积公式再求结果.
【详解】
因为,四边形ABCD是菱形,
所以,AD=AB,
因为,AE:AD=3:5,
所以,AE:AB=3:5,
所以,AE:BE=3:2,
因为,BE=2,
所以,AE=3,AB=CD=5,
所以,DE= ,
所以,菱形ABCD的面积是AB∙DE=5×4=20
故答案为20
本题考核知识点:菱形性质.解题关键点:由勾股定理求出高.
23、1
【解析】
设矩形的宽为xcm,根据矩形的面积=长×宽列出方程解答即可.
【详解】
设矩形的宽为xcm,依题意得:
x(x+1)=132,
整理,得(x+1)(x-11)=0,
解得x1=-1(舍去),x2=11,
则x+1=1.
即矩形的长是1cm.
故答案为:1.
本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
二、解答题(本大题共3个小题,共30分)
24、(1);(1)
【解析】
(1)根据判别式的意义可得△=,解不等式即可求出实数k的取值范围;(1)利用根与系数的关系将两根之和和两根之积代入代数式求k的值即可.
本题解析:
【详解】
解:(1)由题意得:△≥0
∴
∴
(1)由题意得:
由得:
∴
∴ 或
∵ ∴
点睛:本题考查了一元二次方程的根的判别式当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了根与系数的关系.
25、(1)y甲=5x+60,y乙=4.5x+72;(2)当购买笔数大于24支时,乙种方式便宜;当购买笔数为24支时,甲乙两种方式所用钱数相同即甲乙两种方式都可以;当购买笔数大于4支而小于24支时,甲种方式便宜;(3)用甲种方法购买4个书包,用乙种方法购买8支笔最省钱.
【解析】分析:(1)根据购买的费用等于书包的费用+笔的费用就可以得出结论;
(2)由(1)的解析式,分情 y甲>y乙时,况y甲=y乙时和y甲<y乙时分别建立不等式和方程讨论就可以求出结论;
(3)由条件分析可以得出用一种方式购买选择甲商场求出费用,若两种方法都用 设用甲种方法购书包x个,则用乙种方法购书包(4﹣x)个总费用为y,再根据一次函数的性质就可以求出结论.
详解:(1)由题意,得:
y甲=20×4+5(x﹣4)=5x+60,y乙=90%(20×4+5x)=4.5x+72;
(2)由(1)可知 当 y甲>y乙时
5x+60>4.5x+72,解得:x>24,即当购买笔数大于24支时,乙种方式便宜.
当 y甲=y乙时,5x+60=4.5x+72
解得:x=24,即当购买笔数为24支时,甲乙两种方式所用钱数相同即甲乙两种方式都可以.
当 y甲<y乙时,5x+60<4.5x+72,解得:x<24,即当购买笔数大于4支而小于24支时,甲种方式便宜;
(3)用一种方法购买4个书包,12支笔时,由12<24,则选甲种方式 需支出
y=20×4+8×5=120(元)
若两种方法都用 设用甲种方法购书包x个,则用乙种方法购书包(4﹣x)个总费用
y=20 x+90%〔20(4﹣x)+5(12﹣x)〕(0<x≤4)
y=﹣2.5 x+126
由k=﹣2.5<0则y随x增大而减小,即当x=4时 y最小=116(元)
综上所述:用甲种方法购买4个书包,用乙种方法购买8支笔最省钱.
点睛:本题考查了一次函数的解析式的运用,分类讨论的运用及不等式和方程的解法的运用,一次函数的性质的运用,解答时先表示出两种购买方式的解析式是解答第二问的关键,解答第三问灵活运用一次函数的性质是难点.
26、(1)A、B两种型号电脑每台价格分别是0.1万元和0.4万元;(2)最多可购买A种型号电脑12台.
【解析】
(1)设求A种型号电脑每台价格为x万元,则B种型号电脑每台价格(x﹣0.1)万元.根据“用10万元购买A种型号电脑的数量与用8万购买B种型号电脑的数量相同”列出方程,解方程即可求解;(2)设购买A种型号电脑y台,则购买B种型号电脑(20﹣y)台.根据 “用不多于9.2万元的资金购进这两种电脑20台”列出不等式,解不等式即可求解.
【详解】
(1)设求A种型号电脑每台价格为x万元,则B种型号电脑每台价格(x﹣0.1)万元.
根据题意得:,
解得:x=0.1.
经检验:x=0.1是原方程的解,x﹣0.1=0.4
答:A、B两种型号电脑每台价格分别是0.1万元和0.4万元.
(2)设购买A种型号电脑y台,则购买B种型号电脑(20﹣y)台.
根据题意得:0.1y+0.4(20﹣y)≤9.2.
解得:y≤12,
∴最多可购买A种型号电脑12台.
答:最多可购买A种型号电脑12台.
本题考查了分式方程的应用和一元一次不等式的应用.分析题意,找到合适的数量关系是解决问题的关键.
题号
一
二
三
四
五
总分
得分
甲
乙
丙
丁
平均数(环)
9
9.5
9
9.5
方差
3.5
4
4
5.4
2024-2025学年湖南省凤凰县九上数学开学调研模拟试题【含答案】: 这是一份2024-2025学年湖南省凤凰县九上数学开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖南省常德市鼎城区数学九上开学调研试题【含答案】: 这是一份2024-2025学年湖南省常德市鼎城区数学九上开学调研试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年湖南省娄底市娄星区数学九上期末学业质量监测模拟试题含答案: 这是一份2023-2024学年湖南省娄底市娄星区数学九上期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,已知二次函数,下列说法正确的是,下列图形中一定是相似形的是等内容,欢迎下载使用。