2024-2025学年湖北省武汉江夏区五校联考九上数学开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图所示,某产品的生产流水线每小时可生产100件产品,生产前没有产品积压,生产3h后安排工人装箱,若每小时装产品150件,未装箱的产品数量(y)是时间(x)的函数,那么这个函数的大致图像只能是( )
A.B.C.D.
2、(4分)如图,正方形ABCD的边长为3,E、F是对角线BD上的两个动点,且EF=,连接AE、AF,则 AE+AF 的最小值为( )
A.B.3C.D.
3、(4分)根据二次函数y=-x2+2x+3的图像,判断下列说法中,错误的是( )
A.二次函数图像的对称轴是直线x=1;
B.当x>0时,y<4;
C.当x≤1时,函数值y是随着x的增大而增大;
D.当y≥0时,x的取值范围是-1≤x≤3时.
4、(4分)△ABC中,AB=13,AC=15,高AD=12,则BC的长为( )
A.14B.4C.14或4D.以上都不对
5、(4分)若关于的方程是一元二次方程,则的取值范围是( )
A.B.C.D.
6、(4分)有11名同学参加100米赛跑,预赛成绩各不相同,要取前6名参加决赛,小明已经知道了自己的成绩,他想知道自己能否进入决赛,还需要知道这11名同学成绩的( )
A.中位数B.平均数C.众数D.方差
7、(4分)点(3,-4)到x轴的距离为 ( )
A.3 B.4 C.5 D.-4
8、(4分)下列命题是真命题的是( )
A.若,则
B.若,则
C.若是一个完全平方公式,则的值等于
D.将点向上平移个单位长度后得到的点的坐标为
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)分式的值为0,那么x的值为_____.
10、(4分)已知一个多边形中,除去一个内角外,其余内角的和为,则除去的那个内角的度数是______.
11、(4分)如图,在直角坐标系中,菱形ABCD的顶点坐标C(-1,0)、B(0,2)、D(n,2),点A在第二象限.直线y=-x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m+n= ________
12、(4分)某种数据方差的计算公式是,则该组数据的总和为_________________.
13、(4分)小聪让你写一个含有字母的二次根式.具体要求是:不论取何实数,该二次根式都有意义,且二次根式的值为正.你所写的符合要求的一个二次根式是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知关于x的一元二次方程mx2-2x+1=0.
(1)若方程有两个实数根,求m的取值范围;
(2)若方程的两个实数根为x1,x2,且x1x2-x1-x2=,求m的值.
15、(8分)已知,如图,点D是△ABC的边AB的中点,四边形BCED是平行四边形.
(1)求证:四边形ADCE是平行四边形;
(2)在△ABC中,若AC=BC,则四边形ADCE是 ;(只写结论,不需证明)
(3)在(2)的条件下,当AC⊥BC时,求证:四边形ADCE是正方形.
16、(8分)如图,将矩形沿折叠,使点恰好落在边的中点上,点落在处,交于点.若,,求线段的长.
17、(10分)某玉米种子的价格为a元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折.下表是购买量x(千克)、付款金额y(元)部分对应的值,请你结合表格:
(1)写出a、b的值,a= b= ;
(2)求出当x>2时,y关于x的函数关系式;
(3)甲农户将18.8元钱全部用于购买该玉米种子,计算他的购买量.
18、(10分) “知识改变命运,科技繁荣祖国.”为提升中小学生的科技素养,我区每年都要举办中小学科技节.为迎接比赛,该校在集训后进行了校内选拔赛,最后一轮复赛,决定在甲、乙2名候选人中选出1人代表学校参加区科技节项目的比赛,每人进行了4次测试,对照一定的标准,得分如下:甲:80,1,100,50;乙:75,80,75,1.如果你是教练,你打算安排谁代表学校参赛?请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=_____.
20、(4分)如图①,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图②,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为______.
21、(4分)若代数式在实数范围内有意义,则x的取值范围是_____.
22、(4分)如果一组数据1,3,5,,8的方差是0.7,则另一组数据11,13,15,,18的方差是________.
23、(4分)如图,在等腰直角三角形ACD,∠ACD=90°,AC=,分别以边AD,AC,CD为直径面半图,所得两个月形图案AGCE和DHCF的面积之和(图中阴影部分)为_____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB
(1)求证:四边形EFCD是菱形;
(2)设CD=2,求D、F两点间的距离.
25、(10分)如图,在中,,平分,交于点,交的延长线于点,交于点.
(1)求证:四边形为菱形;
(2)若,,求的长.
26、(12分) “五一节”期间,申老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.
(1)求他们出发半小时时,离家多少千米?
(2)求出AB段图象的函数表达式;
(3)他们出发2小时时,离目的地还有多少千米?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
分析:根据题意中的生产流程,发现前三个小时是生产时间,所以未装箱的产品的数量是增加的,后开始装箱,每小时装的产品比每小时生产的产品数量多,所以未装箱的产品数量是下降的,直至减为零.
详解:由题意,得前三个小时是生产时间,所以未装箱的产品的数量是增加的.
∵3小时后开始装箱,每小时装的产品比每小时生产的产品数量多,∴3小时后,未装箱的产品数量是下降的,直至减至为零.
表现在图象上为随着时间的增加,图象是先上升后下降至0的.
故选A.
点睛:本题考查了的实际生活中函数的图形变化,属于基础题.解决本题的主要方法是根据题意判断函数图形的大致走势,然后再下结论,本题无需计算,通过观察看图,做法比较新颖.
2、A
【解析】
如图作AH∥BD,使得AH=EF=,连接CH交BD于F,则AE+AF的值最小.
【详解】
解:如图作AH∥BD,使得AH=EF=,连接CH交BD于F,则AE+AF的值最小.
∵AH=EF,AH∥EF,
∴四边形EFHA是平行四边形,
∴EA=FH,
∵FA=FC,
∴AE+AF=FH+CF=CH,
∵四边形ABCD是正方形,
∴AC⊥BD,∵AH∥DB,
∴AC⊥AH,
∴∠CAH=90°,
在Rt△CAH中,CH= =2 ,
∴AE+AF的最小值2,
故选:A.
本题考查轴对称-最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.
3、B
【解析】
试题分析:,
所以x=1时,y取得最大值4,
时,y<4,B错误
故选B.
考点:二次函数图像
点评:解答二次函数图像的问题,关键是读懂题目中的信息,正确化简出相应的格式,并与图像一一对应判断.
4、C
【解析】
分两种情况:△ABC是锐角三角形和△ABC是钝角三角形,都需要先求出BD,CD的长度,在锐角三角形中,利用求解;在钝角三角形中,利用求解.
【详解】
(1)若△ABC是锐角三角形,
在中,
∵
由勾股定理得
在中,
∵
由勾股定理得
∴
(2)若△ABC是钝角三角形,
在中,
∵
由勾股定理得
在中,
∵
由勾股定理得
∴
综上所述,BC的长为14或4
故选:C.
本题主要考查勾股定理,掌握勾股定理并分情况讨论是解题的关键.
5、A
【解析】
本题根据一元二次方程的定义求解,一元二次方程必须满足两个条件:未知数的最高次数是2;二次项系数不为1.由这两个条件得到相应的关系式,再求解即可.
【详解】
由题意,得
m-2≠1,
m≠2,
故选A.
本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).特别要注意a≠1的条件.这是在做题过程中容易忽视的知识点.
6、A
【解析】
由于有11名同学参加预赛,要取前6名参加决赛,故应考虑中位数的大小.
【详解】
解:共有11名学生参加预赛,取前6名,所以小明需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第6名学生的成绩是这组数据的中位数,所以小明知道这组数据的中位数,才能知道自己是否进入决赛.
故选A.
本题考查了统计量的选择,解题的关键是学会运用中位数的意义解决实际问题.
7、B
【解析】分析:-4的绝对值即为点P到x轴的距离.
详解:∵点P到x轴的距离为其纵坐标的绝对值即|−4|=4,
∴点P到x轴的距离为4.
故选B.
点睛:本题考查了点的坐标,用到的知识点为:点到x轴的距离为点的纵坐标的绝对值.
8、B
【解析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【详解】
、若,则,是假命题;
、若,则,是真命题;
、若是一个完全平方公式,则的值等于,是假命题;
、将点向上平移3个单位后得到的点的坐标为,是假命题.
故选:.
本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉掌握相关定理.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
分式的值为1的条件是:(1)分子为1;(2)分母不为1.两个条件需同时具备,缺一不可.据此可以解答本题.
【详解】
解:由题意可得:x2﹣9=1且x+2≠1,
解得x=2.
故答案为:2.
此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:分母不为零这个条件不能少.
10、
【解析】
由于多边形内角和=,即多边形内角和是180°的整数倍,因此先用减去后的内角和除以180°,得到余数为80°,因此减去的角=180°-80°=100°.
【详解】
∵1160°÷180°=6…80°,
又∵100°+80°=180°,
∴这个内角度数为100°,
故答案为:100°.
本题主要考查多边形内角和,解决本题的关键是要熟练掌握多边形内角和的相关计算.
11、1.
【解析】
根据菱形的对角线互相垂直平分表示出点A、点D的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的取值,由此即可求得答案.
【详解】
∵菱形ABCD的顶点C(-1,0),点B(0,2),
∴点A的坐标为(-1,4),点D坐标为(-2,2),
∵D(n,2),
∴n=-2,
当y=4时,-x+5=4,
解得x=2,
∴点A向右移动2+1=3时,点A在MN上,
∴m的值为3,
∴m+n=1,
故答案为:1.
本题考查了一次函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,正确把握菱形的性质、一次函数图象上点的坐标特征是解题的关键.
12、32
【解析】
根据方差公式可知这组数据的样本容量和平均数,即可求出这组数据的总和.
【详解】
∵数据方差的计算公式是,
∴样本容量为8,平均数为4,
∴该组数据的总和为8×4=32,
故答案为:32
本题考查方差及平均数的意义,一般地,设n个数据,x1、x2、…xn的平均数为x,则方差s2=[(x1-x)2+(x2-x)2+…+(xn-x)2],平均数是指在一组数据中所有数据之和再除以数据的个数.
13、
【解析】
根据二次根式的定义即可求解.
【详解】
依题意写出一个二次根式为.
此题主要考查二次根式的定义,解题的关键是熟知二次根式的特点.
三、解答题(本大题共5个小题,共48分)
14、 (1)m≤1且m≠0(2) m=-2
【解析】
(1)根据一元二次方程的定义和判别式得到m≠0且Δ=(-2)2-4m≥0,然后求解不等式即可;
(2)先根据根与系数的关系得到x1+x2=,x1x2=,再将已知条件变形得x1x2-(x1+x2)=,然后整体代入求解即可.
【详解】
(1)根据题意,得m≠0且Δ=(-2)2-4m≥0,
解得m≤1且m≠0.
(2)根据题意,得x1+x2=,x1x2=,
∵x1x2-x1-x2=,即x1x2-(x1+x2)=,
∴-=,
解得m=-2.
本题考查一元二次方程ax2+bx+c=0(a≠0)根的判别式和根与系数的关系(韦达定理),
根的判别式:(1)当△=b2﹣4ac>0时,方程有两个不相等的实数根;
(2)当△=b2﹣4ac=0时,方程有有两个相等的实数根;
(3)当△=b2﹣4ac<0时,方程没有实数根.
韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=,x1x2=.
15、 (1)证明见解析;(2)矩形;(3)证明见解析.
【解析】
(1)证明是平行四边形的方法有很多,此题用一组对边平行且相等较为简单.
(2)根据矩形的判定解答即可.
(3)根据正方形的判定解答即可.
【详解】
证明:(1)∵四边形BCED是平行四边形,
∴BD∥CE,BD=CE;
∵D是AB的中点,
∴AD=BD,
∴AD=CE;
又∵BD∥CE,
∴四边形ADCE是平行四边形.
(2)在△ABC中,若AC=BC,则四边形ADCE是矩形,
故答案为矩形;
(3)∵AC⊥BC,
∴∠ACB=90°;
∵在Rt△ABC中,D是AB的中点,
∴CD=AD=AB;
∵在△ABC中,AC=BC,D是AB的中点,
∴CD⊥AB,
∴∠ADC=90°;
∴平行四边形ADCE是正方形.
此题考查正方形的判定,能够运用已学知识证明四边形是平行四边形,另外要熟练掌握正方形的性质及判定.
16、.
【解析】
先根据勾股定理求出BF,再根据△AMC′∽△BC′F求出AM即可.
【详解】
解:根据折叠的性质可知,FC=FC′,∠C=∠FC′M=90°,
设BF=x,则FC=FC′=9-x,
∵BF2+BC′2=FC′2,
∴x2+32=(9-x)2,
解得:x=4,即BF=4,
∵∠FC′M=90°,
∴∠AC′M+∠BC′F=90°,
又∵∠BFC′+BC′F=90°,
∴∠AC′M=∠BFC′,
∵∠A=∠B=90°,
∴△AMC′∽△BC′F,
,
∵BC′=AC′=3,
∴AM=.
本题主要考查了折叠的性质,矩形的性质,相似三角形的判定与性质,能够发现△AMC′∽△BC′F是解决问题的关键.
17、(1)5,1;(2)y=4x+2;(3)甲农户的购买量为4.2千克.
【解析】
(1)由表格即可得出购买量为函数的自变量x,再根据购买2千克花了10元钱即可得出a值,结合超过2千克部分的种子价格打8折可得出b值;
(2)设当x>2时,y关于x的函数解析式为y=kx+b,根据点的坐标利用待定系数法即可求出函数解析式;
(3)由18.8>10,利用“购买量=钱数÷单价”即可得出甲农户的购买了,再将y=18.8代入(2)的解析式中即可求出农户的购买量.
【详解】
解:(1)由表格即可得出购买量是函数的自变量x,
∵10÷2=5,
∴a=5,b=2×5+5×0.8=1.
故答案为:5,1;
(2)设当x>2时,y关于x的函数解析式为y=kx+b,
将点(2.5,12)、(3,1)代入y=kx+b中,
得:,
解得:,
∴当x>2时,y关于x的函数解析式为y=4x+2.
(3)∵18.8>10,
4x+2=18.8
x=4.2
∴甲农户的购买量为:4.2(千克).
答:甲农户的购买量为4.2千克.
本题考查了一次函数的应用以及待定系数法求出函数解析式,观察函数图象找出点的坐标再利用待定系数法求出函数解析式是解题的关键.
18、选乙代表学校参赛;理由见解析.
【解析】
分别计算出甲、乙2名候选人的平均分和方差即可.
【详解】
解:选乙代表学校参赛;
∵=75,
∴S2甲=[(80﹣75)2+(1﹣75)2+(100﹣75)2+(50﹣75)2]=325,
S2乙═[(75﹣75)2+(80﹣75)2+(75﹣75)2+(1﹣75)2]=12.5,
∵S2甲>S2乙
∴乙的成绩比甲的更稳定,选乙代表学校参赛.
考查了方差的知识,解题的关键是熟记公式并正确的计算,难度不大.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-2
【解析】
由正比例函数的定义可得m2﹣2=2,且m﹣2≠2.
【详解】
解:由正比例函数的定义可得:m2﹣2=2,且m﹣2≠2,
解得:m=﹣2,
故答案为:﹣2.
本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠2.
20、1.
【解析】
解:依题意知,BG=AF=DE=8,EF=FG=2,∴BF=BG﹣BF=6,∴直角△ABF中,利用勾股定理得:AB===1.故答案为1.
点睛:此题考查勾股定理的证明,解题的关键是得到直角△ABF的两直角边的长度.
21、x≤
【解析】
∵代数式在实数范围内有意义,
∴,解得:.
故答案为:.
22、0.1
【解析】
根据题目中的数据和方差的定义,可以求得所求数据的方差.
【详解】
设一组数据1,3,5,a,8的平均数是,另一组数据11,13,15,+10,18的平均数是+10,
∵=0.1,
∴
=
=0.1,
故答案为0.1.
本题考查方差,解答本题的关键是明确题意,利用方差的知识解答.
23、1
【解析】
由勾股定理可得AC2+CD2=AD2,然后确定出S半圆ACD=S半圆AEC+S半圆CFD,从而得证.
【详解】
解:∵△ACD是直角三角形,
∴AC2+CD2=AD2,
∵以等腰Rt△ACD的边AD、AC、CD为直径画半圆,
∴S半圆ACD=π•AD2,S半圆AEC=π•AC2,S半圆CFD=π•CD2,
∴S半圆ACD=S半圆AEC+S半圆CFD,
∴所得两个月型图案AGCE和DHCF的面积之和(图中阴影部分)=Rt△ACD的面积=××=1;
故答案为1.
本题考查了勾股定理,等腰直角三角形的性质,掌握定理是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)
【解析】
(1)由等边三角形的性质得出ED=CD=CE,证出△CEF是等边三角形,得出EF=CF=CE,得出ED=CD=EF=CF,即可得出结论;
(2)连接DF,与CE相交于点G,根据菱形的性质求出DG,即可得出结果.
【详解】
(1)证明:∵△ABC与△CDE都是等边三角形,
∴ED=CD=CE,∠A=∠B=∠BCA=60°.
∴EF∥AB.
∴∠CEF=∠A=60°,∠CFE=∠B=60°,
∴∠CEF=∠CFE=∠ACB,
∴△CEF是等边三角形,
∴EF=CF=CE,
∴ED=CD=EF=CF,
∴四边形EFCD是菱形.
(2)连接DF与CE交于点G
∵四边形EFCD是菱形
∴DF⊥CE, DF=2DG
∵CD=2,△EDC是等边三边形
∴CG=1,DG=
∴DF=2DG=,即D、F两点间的距离为
本题考查了菱形的判定与性质、等边三角形的判定与性质、勾股定理等知识;熟练掌握菱形的判定与性质是解题的关键.
25、(1)详见解析;(2)
【解析】
1)先证出四边形AEGD是平行四边形,再由平行线的性质和角平分线证出∠ADE=∠AED,得出AD=AE,即可得出结论;
(2)连接AG交DF于H,由菱形的性质得出AD=DG,AG⊥DE,证出△ADG是等边三角形,AG=AD=2,得出∠ADH=30°,,由直角三角形的性质得出,得出,证出DG=BE,由平行线的性质得出∠EDG=∠FEB,∠DGE=∠C=∠EBF,证明△DGE≌△EBF得出DE=EF,即可得出结果.
【详解】
(1)证明:四边形是平行四边形,
,
,
,,
四边形是平行四边形,
平分,
,
,
,
四边形为菱形;
(2)解:连接交于,如图所示:
四边形为菱形,
,,
,,
是等边三角形,,
,,
,
,
,,,,
,,,
在和中,,
,
,
.
本题考查了菱形的判定与性质、平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定、等边三角形的判定与性质、直角三角形的性质等知识;熟练掌握菱形的判定与性质是解题的关键.
26、(1)30(2)y=80x﹣30(1.5≤x≤2.5);(3)他们出发2小时,离目的地还有40千米
【解析】
(1)先设函数解析式,再根据点坐标求解析式,带入数值求解即可(2)根据点坐标求AB段的函数解析式(3)根据题意将x=2带入AB段解析式中求值即可.
【详解】
解:(1)设OA段图象的函数表达式为y=kx.
∵当x=1.5时,y=90,
∴1.5k=90,
∴k=60.
∴y=60x(0≤x≤1.5),
∴当x=0.5时,y=60×0.5=30.
故他们出发半小时时,离家30千米;
(2)设AB段图象的函数表达式为y=k′x+b.
∵A(1.5,90),B(2.5,170)在AB上,
∴①1.5k′+b=90 ② 2.5k′+b=170
解得k′=80 b=-30
∴y=80x-30(1.5≤x≤2.5);
(3)∵当x=2时,y=80×2-30=130,
∴170-130=40.
故他们出发2小时时,离目的地还有40千米.
此题重点考察学生对一次函数的实际应用能力,利用待定系数法来确定一次函数的表达式是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
购买量x(千克)
1.5
2
2.5
3
付款金额y(元)
7.5
10
12
b
2024-2025学年湖北省武汉江夏区五校联考九上数学开学质量跟踪监视试题【含答案】: 这是一份2024-2025学年湖北省武汉江夏区五校联考九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖北省随州随县联考九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年湖北省随州随县联考九上数学开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖北省十堰市竹溪县数学九上开学质量跟踪监视试题【含答案】: 这是一份2024-2025学年湖北省十堰市竹溪县数学九上开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。