|试卷下载
搜索
    上传资料 赚现金
    2024-2025学年广西柳州市柳北区九级数学九年级第一学期开学学业质量监测模拟试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年广西柳州市柳北区九级数学九年级第一学期开学学业质量监测模拟试题【含答案】01
    2024-2025学年广西柳州市柳北区九级数学九年级第一学期开学学业质量监测模拟试题【含答案】02
    2024-2025学年广西柳州市柳北区九级数学九年级第一学期开学学业质量监测模拟试题【含答案】03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年广西柳州市柳北区九级数学九年级第一学期开学学业质量监测模拟试题【含答案】

    展开
    这是一份2024-2025学年广西柳州市柳北区九级数学九年级第一学期开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)小明在家中利用物理知识称量某个品牌纯牛奶的净含量,称得六盒纯牛奶的含量分别为:248mL,250mL,249mL,251mL,249mL,253mL,对于这组数据,下列说法正确的是( ).
    A.平均数为251mLB.中位数为249mL
    C.众数为250mLD.方差为
    2、(4分)已知函数y=kx-k的图象如图所示,则k的取值为( )
    A.k<0B.k>0C.k≥0D.k≤0
    3、(4分)如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x的不等式x+m<kx﹣1的解集在数轴上表示正确的是( )
    A.B.
    C.D.
    4、(4分)某景点的参观人数逐年增加,据统计,2015年为10.8万人次,2017年为16.8万人次.设参观人次的平均年增长率为x,则( )
    A.10.8(1+x)=16.8B.16.8(1﹣x)=10.8
    C.10.8(1+x)2=16.8D.10.8[(1+x)+(1+x)2]=16.8
    5、(4分)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如表:
    该店主决定本周进货时,增加了一些 尺码的衬衫,影响该店主决策的统计量是( )
    A.众数B.方差C.平均数D.中位数
    6、(4分)点P(-4,2)关于原点对称点的坐标P’(-2,-2)则等于 ( )
    A.6B.-6C.2D.-2
    7、(4分)已知一组数据:1,2,8,,7,它们的平均数是1.则这组数据的中位数是( )
    A.7B.1C.5D.4
    8、(4分)正方形ABCD的边长为2,以AD为边作等边△ADE,则点E到BC的距离是( )
    A.2+B.2-C.2+,2-D.4-
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒lcm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′,设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为_____.
    10、(4分)某正比例函数图象经过点(1,2),则该函数图象的解析式为___________
    11、(4分)已知正方形,以为顶角,边为腰作等腰,连接,则__________.
    12、(4分)分解因式:______________。
    13、(4分)如图,△A1OM是腰长为1的等腰直角三角形,以A1M为一边,作A1A2⊥A1M,且A1A2=1,连接A2M,再以A2M为一边,作A2A3⊥A2M,且A2A3=1,则A1M=_____,照此规律操作下去…则AnM=_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)又到一年丰收季,重庆外国语学校“国内中考、高考、国内保送、出国留学”捷报频传.作为准初三的初二年级学生希望抓紧暑期更好的提升自我.张同学采用随机抽样的方式对初二年级学生此次暑期生活的主要计划进行了问卷调查,并将调查结果按照“A社会实践类、B学习提高类、C游艺娱乐类、D其他”进行了分类统计,并绘制了如图1和如图2两幅不完整的统计图.(接受调查的每名同学只能在四类中选择其中一种类型,不可多选或不选.)请根据图中提供的信息完成以下问题.
    (1)扇形统计图中表示B类的扇形的圆心角是 度,并补全条形统计图;
    (2)张同学已从被调查的同学中确定了甲、乙、丙、丁四名同学进行开学后的经验交流,并计划在这四人中选出两人的宝贵经验刊登在本班班刊上.请利用画树状图或列表的方法求出甲同学的经验刊登在班刊上的概率.
    15、(8分)计算:+--
    16、(8分)全国在抗击“新冠肺炎”疫情期间,甲,乙两家公司共同参与一项改建有1800个床位的方舱医院的工程.已知甲,乙两家公司每小时改建床位的数量之比为3:1.且甲公司单独完成此项工程比乙公司单独完成此项工程要少用10小时,
    (1)分别求甲,乙两家公司每小时改建床位的数量;
    (1)甲,乙两家公司完成该项工程,若要求乙公司的工作时间不得少于甲公司的工作时间的,求乙公司至少工作多少小时?
    17、(10分)如图,在平面直角坐标系中,已知的三个顶点坐标分别是,,.
    (1)先作出,再将向下平移5个单位长度后得到,请画出,;
    (2)将绕原点逆时针旋转90°后得得到,请画出;
    (3)判断以,,为顶点的三角形的形状.(无需说明理由)
    18、(10分)如图,在中,,点D,E分别是边AB,AC的中点,连接DE,DC,过点A作交DE的延长线于点F,连接CF.
    (1)求证:;
    (2)求证,四边形BCFD是平行四边形;
    (3)若,,求四边形ADCF的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若方程的两根为,,则________.
    20、(4分)已知一等腰三角形有两边长为,4,则这个三角形的周长为_______.
    21、(4分)数据15、19、15、18、21的中位数为_____.
    22、(4分)(2014•嘉定区二模)一元二次方程x2=x的解为 .
    23、(4分)直线与轴的交点坐标是________________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)近些年全国各地频发雾霾天气,给人民群众的身体健康带来了危害,某商场看到商机后决定购进甲、乙两种空气净化器进行销售.若每台甲种空气净化器的进价比每台乙种空气净化器的进价少300元,且用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同.
    (1)求每台甲种空气净化器、每台乙种空气净化器的进价分别为多少元?
    (2)若该商场准备进货甲、乙两种空气净化器共30台,且进货花费不超过42000元,问最少进货甲种空气净化器多少台?
    25、(10分)为了更好的治理西流湖水质,保护环境,市治污公司决定购买 10 台污水处理设备.现有 A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:
    经调查:购买一台 A 型设备比购买一台 B 型设备多 2 万元,购买 2 台 A 型设备比购买 3 台 B 型设备少 6 万元.
    (1)求 a,b 的值;
    (2)经预算:市治污公司购买污水处理设备的资金不超过 105 万元,你认为该公司 有哪几种购买方案;
    (3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于 2040 吨,为了节 约资金,请你为治污公司设计一种最省钱的购买方案.
    26、(12分)如图,函数的图象与函数的图象交于点,.
    (1)求函数的表达式;
    (2)观察图象,直接写出不等式的解集;
    (3)若点是轴上的动点,当周长最小时,求点的坐标.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    试题分析:中位数是一组数据按大小顺序排列,中间一个数或两个数的平均数,即为中位数;出现次数最多的数即为众数;方差就是各变量值与其均值离差平方的平均数,根据方差公式计算即可,所以计算方差前要先算出平均数,然后再利用方差公式计算.A、这组数据平均数为:(248+250+249+251+249+253)÷6=250,故此选项错误;B、数据重新排列为:248,249,249,250,251,253,其中位数是(249+250)÷2=249.5,故此选项错误;C、这组数据出现次数最多的是249,则众数为249,故此选项错误;D、这组数据的平均数250,根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],则其方差为:×[(248﹣250)2+(250﹣250)2+(249﹣250)2+(251﹣250)2+(249﹣250)2+(253﹣250)2]=,故此选项正确;故选D.
    考点:平均数、中位数、众数、方差的定义.
    2、A
    【解析】
    根据一次函数的性质:当k<0时,函数y=kx-k中y随着x的增加而减小,可确定k的取值范围,再根据图像与y轴的交点即可得出答案.
    【详解】
    由图象知:函数y=kx-k中y随着x的增大而减小,
    所以k<0,
    ∵交与y轴的正半轴,
    ∴-k>0,
    ∴k<0,
    故选:A.
    考查了一次函数的图象与系数的关系,解题的关键是了解图象与系数的关系,难度不大.对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小. 当b>0,图像与y轴的正半轴相交,当b<0,图像与y轴的负半轴相交.
    3、D
    【解析】
    利用函数图象,找出直线y=x+m在直线y=kx-1的下方所对应的自变量的范围即可
    【详解】
    解析
    根据图象得,当x<-1时,x+m故选D
    此题考查在数轴上表示不等式的解集和一次函数与ー元一次不等式,解题关键在于判定函数图象的位置关系
    4、C
    【解析】
    试题分析:设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程10.8(1+x)2=16.8,
    故选C.
    考点:由实际问题抽象出一元二次方程
    5、A
    【解析】
    平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.
    【详解】
    解:由于众数是数据中出现次数最多的数,
    故影响该店主决策的统计量是众数.
    故选:A.
    本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.掌握以上知识是解题的关键.
    6、A
    【解析】
    根据关于原点对称的点的坐标特点进行求解.
    【详解】
    解:∵点P(a-4,2)关于原点对称的点的坐标P′(-2,-2),
    ∴a-4=2,
    ∴a=6,
    故选:A.
    本题考查了关于原点对称的点的坐标特点,关键是熟记关于原点对称的点的横纵坐标都变为相反数.
    7、A
    【解析】
    分析:首先根据平均数为1求出x的值,然后根据中位数的概念求解.
    详解:由题意得:1+2+8+x+2=1×5,解得:x=2,这组数据按照从小到大的顺序排列为:2,1,2,2,8,则中位数为2.
    故选A.
    点睛:本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.
    8、C
    【解析】
    由等边三角形的性质可得点E到AD上的距离为,分两种情况可求点E到BC的距离.
    【详解】
    解:∵等边△ADE的边长为2
    ∴点E到AD上的距离EG为,
    当△ADE在正方形外面,
    ∴点E到BC的距离=2+
    当△ADE在正方形里面
    ∴点E到BC的距离=2-
    故选:C.
    本题考查了正方形的性质,等边三角形的性质,熟练运用正方形的性质是本题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    作PD⊥BC于D,PE⊥AC于E,如图,AP=t,BQ=tcm,(0≤t<6)
    ∵∠C=90°,AC=BC=6cm,
    ∴△ABC为直角三角形,
    ∴∠A=∠B=45°,
    ∴△APE和△PBD为等腰直角三角形,
    ∴PE=AE=AP=tcm,BD=PD,
    ∴CE=AC﹣AE=(6﹣t)cm,
    ∵四边形PECD为矩形,
    ∴PD=EC=(6﹣t)cm,
    ∴BD=(6﹣t)cm,
    ∴QD=BD﹣BQ=(6﹣1t)cm,
    在Rt△PCE中,PC1=PE1+CE1=t1+(6﹣t)1,
    在Rt△PDQ中,PQ1=PD1+DQ1=(6﹣t)1+(6﹣1t)1,
    ∵四边形QPCP′为菱形,
    ∴PQ=PC,
    ∴t1+(6﹣t)1=(6﹣t)1+(6﹣1t)1,
    ∴t1=1,t1=6(舍去),
    ∴t的值为1.
    故答案为1.
    【点睛】
    此题主要考查了菱形的性质,勾股定理,关键是要熟记定理的内容并会应用 .
    10、
    【解析】
    设正比例函数的解析式为y=kx,然后把点(1,2)代入y=kx中求出k的值即可.
    【详解】
    解:设正比例函数的解析式为y=kx,
    把点(1,2)代入得,
    2=k×1,
    解得k=2,
    ∴该函数图象的解析式为:;
    故答案为:.
    本题主要考查了待定系数法求正比例函数解析式,掌握待定系数法求正比例函数解析式是解题的关键.
    11、或
    【解析】
    分两种情况画图分析:点E在正方形内部和点E在正方形外部.设,再利用等腰三角形的性质以及三角形的内角和分别求解即可.
    【详解】
    解:如图1,设
    如图2,设

    故答案为:135°或45°.
    本题考查了正方形的性质,等腰三角形的性质,分类讨论的数学思想,对点在正方形内部或外部进行讨论.解题关键是画出相应的图.
    12、4x(x+1)(x-1)
    【解析】
    4x3-4x=4x(x2-1)=4x(x+1)(x-1).
    故答案为4x(x+1)(x-1).
    13、 .
    【解析】
    分析:根据勾股定理分别求出直角三角形的斜边长,从而得出一般性的规律.
    详解:∵,,,……,.
    点睛:本题主要考查的是直角三角形的勾股定理以及规律的发现,属于基础题型.解决这种问题的关键就是得出前面几个三角形的斜边,从而得出一般性的规律.
    三、解答题(本大题共5个小题,共48分)
    14、(1)144(2)
    【解析】
    (1)先根据A类型人数及其所占百分比求得总人数,继而根据各类型人数之和等于总人数求得B的人数,再用360°乘以B类型人数所占比例可得;
    (2)列表得出所有等可能结果,从中找打符合条件的结果数,再利用概率公式可得答案.
    【详解】
    解:(1)∵被调查的人数为45÷30%=150人,
    ∴B等级人数为150﹣(45+15+30)=60人,
    则扇形统计图中表示B类的扇形的圆心角是360°×=144°,
    补全图形如下:
    故答案为144;
    (2)列表如下:
    由树状图(或表格)可知,所有等可能的结果共12种,其中包含甲同学的有6种,
    所以P(甲同学的经验刊登在班刊上的概率)=.
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.
    15、2+3
    【解析】
    根据二次根式的运算法则即可求出答案.
    【详解】
    原式=4+3﹣﹣ =2+3
    本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算,本题属于基础题型.
    16、(1)甲公司每小时改建床位的数量是45个,乙公司公司每小时改建床位的数量是30个;(1)2小时
    【解析】
    (1)设甲公司每小时改建床位的数量是x个,则乙公司公司每小时改建床位的数量是y个,根据甲,乙两家公司每小时改建床位的数量之比为3:1;甲做的工作量+乙做的工作量=工作总量建立方程组求出其解即可;
    (1)设乙公司工作z小时,根据乙公司的工作时间不得少于甲公司的工作时间的,建立不等式求出其解即可.
    【详解】
    解:(1)设甲公司每小时改建床位的数量是x个,则乙公司公司每小时改建床位的数量是y个,依题意有

    解得,,
    经检验,是方程组的解且符合题意,
    故甲公司每小时改建床位的数量是45个,乙公司公司每小时改建床位的数量是30个;
    (1)设乙公司工作z小时,依题意有
    z≥×,
    解得z≥2.
    故乙公司至少工作2小时.
    本题考查了一元一次不等式的应用、列分式方程和二元一次方程组解实际问题的运用,是一道工程问题的运用题,解答时根据甲的工作效率+乙的工作效率=合作一天的工作效率为等量关系建立方程是关键,第二问列出不等式是解题的关键.
    17、(1)见解析;(2)见解析;(3)等腰直角三角形
    【解析】
    (1)利用描点法作出△ABC,再利用点平移的坐标特征写出A、B、C的对应点A1、B1、C1,然后描点得到△A1B1C1;
    (2)利用网格特点和旋转的性质画出A、B、C的对应点A2、B2,C2,从而得△A2B2C2;
    (3)利用勾股定理和勾股定理的逆定理可证明△OA1B为等腰直角三角形.
    【详解】
    解:(1)如图所示,△A1B1C1即为所求.
    (2)如图所示,△A2B2C2即为所求.
    (3)三角形的形状为等腰直角三角形.
    ∵OB=,OA1=,BA1=,
    ∴OB2+OA12=BA12,
    ∴△OA1B为等腰直角三角形.
    本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.
    18、(1),见解析;(2)四边形BCFD是平行四边形,见解析;(3).
    【解析】
    (1)欲证明DE=EF,只要证明△AEF≌△CED即可;
    (2)只要证明BC=DF,BC∥DF即可;
    (3)只要证明AC⊥DF,求出DF、AC即可;
    【详解】
    (1)证明:∵,∴,
    ∵,,
    ∴,
    ∴.
    (2)∵,,∴,,
    ∵,∴,
    ∴四边形BCFD是平行四边形.
    (3)在中,,,
    ∴,,,
    ∴,
    ∵DE∥BC,∴,
    ∴,
    ∴.
    本题考查平行四边形的判定和性质、三角形的中位线定理.解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    解:∵∴
    ∴或.∵,∴

    故答案为:1.
    20、14或16.
    【解析】
    求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
    【详解】
    (1)若4为腰长,6为底边长,
    由于6−4<4<6+4,即符合三角形的两边之和大于第三边.
    所以这个三角形的周长为6+4+4=14.
    (2)若6为腰长,4为底边长,
    由于6−6<4<6+6,即符合三角形的两边之和大于第三边.
    所以这个三角形的周长为6+6+4=16.
    故等腰三角形的周长为:14或16.
    故答案为:14或16.
    此题考查三角形三边关系,等腰三角形的性质,解题关键在于分情况讨论
    21、1
    【解析】
    将这五个数排序后,可知第3位的数是1,因此中位数是1.
    【详解】
    将这组数据排序得:15,15,1,19,21,处于第三位是1,因此中位数是1,
    故答案为:1.
    考查中位数的意义和求法,将一组数据排序后处在中间位置的一个数或两个数的平均数是中位数.
    22、x1=0,x2=1.
    【解析】
    试题分析:首先把x移项,再把方程的左面分解因式,即可得到答案.
    解:x2=x,
    移项得:x2﹣x=0,
    ∴x(x﹣1)=0,
    x=0或x﹣1=0,
    ∴x1=0,x2=1.
    故答案为:x1=0,x2=1.
    考点:解一元二次方程-因式分解法.
    23、
    【解析】
    根据一次函数的性质,与轴的交点即横坐标为0,代入即可得解.
    【详解】
    根据题意,得
    当时,,
    即与轴的交点坐标是
    故答案为.
    此题主要考查一次函数的性质,熟练掌握,即可解题.
    二、解答题(本大题共3个小题,共30分)
    24、(1)每台甲种空气净化器、每台乙种空气净化器的进价分别为1200元,1500元(2)至少进货甲种空气净化器10台.
    【解析】
    (1)设每台甲种空气净化器为x元,乙种净化器为(x+300)元,根据用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同,列出方程求解即可;
    (2)设甲种空气净化器为y台,乙种净化器为(30﹣y)台,根据进货花费不超过42000元,列出不等式求解即可.
    【详解】
    (1)设每台甲种空气净化器为x元,乙种净化器为(x+300)元,由题意得:

    解得:x=1200,
    经检验得:x=1200是原方程的解,
    则x+300=1500,
    答:每台甲种空气净化器、每台乙种空气净化器的进价分别为1200元,1500元.
    (2)设甲种空气净化器为y台,乙种净化器为(30﹣y)台,根据题意得:
    1200y+1500(30﹣y)≤42000,
    y≥10,
    答:至少进货甲种空气净化器10台.
    本题考查分式方程和不等式的应用,分析题意,找到合适的等量关系列出方程和不等式是解决问题的关键.
    25、(1);(2)①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台. ;(3)为了节约资金,应选购A型设备1台,B型设备9台.
    【解析】
    (1)根据“购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元”即可列出方程组,继而进行求解;
    (2)可设购买污水处理设备A型设备x台,B型设备(10-x)台,则有12x+10(10-x)≤105,解之确定x的值,即可确定方案;
    (3)因为每月要求处理流溪河两岸的污水量不低于2040吨,所以有240x+200(10-x)≥2040,解之即可由x的值确定方案,然后进行比较,作出选择.
    【详解】
    (1)根据题意得: ,
    ∴ ;
    (2)设购买污水处理设备A型设备x台,B型设备(10−x)台,
    则:12x+10(10−x)⩽105,
    ∴x⩽2.5,
    ∵x取非负整数,
    ∴x=0,1,2,
    ∴有三种购买方案:
    ①A型设备0台,B型设备10台;
    ②A型设备1台,B型设备9台;
    ③A型设备2台,B型设备8台.
    (3)由题意:240x+200(10−x)⩾2040,
    ∴x⩾1,
    又∵x⩽2.5,x取非负整数,
    ∴x为1,2.
    当x=1时,购买资金为:12×1+10×9=102(万元),
    当x=2时,购买资金为:12×2+10×8=104(万元),
    ∴为了节约资金,应选购A型设备1台,B型设备9台.
    此题考查一元一次不等式的应用,二元一次方程组的应用,解题关键在于理解题意列出方程.
    26、 (1);(2)或;(3)点的坐标为.
    【解析】
    (1)先把A(1,a),B(b,2)分别代入y=-2x+8中求出a、b的值得到A(1,6),B(3,2),然后把A点坐标代入中得到k的值,从而得到反比例函数解析式;
    (2)写出一次函数图象在反比例函数图像上方所对应的自变量的范围即可;
    (3)作点A关于y轴的对称点A′,连接BA′交y轴于P,如图,则A′(-1,6),根据两点之间线段最短判断此时PA+PB的值最小,△ABP周长最小,然后利用待定系数法求出直线A′B的解析式,从而得到点P的坐标.
    【详解】
    解:(1)把,分别代入得,
    ,解得,
    ∴,;
    把代入得,
    ∴反比例函数解析式为;
    (2)不等式的解集为或;
    (3)作点关于轴的对称点,连接交轴于,如图,则,
    ∵,
    ∴此时的值最小,周长最小,
    设直线的解析式为,
    把,代入得,解得,
    ∴直线的解析式为,
    ∴点的坐标为.
    本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.
    题号





    总分
    得分
    批阅人
    尺码
    39
    40
    41
    42
    43
    平均每天销售数量(件)
    10
    12
    20
    12
    12
    A 型
    B 型
    价格(万元/台)
    a
    b
    处理污水量(吨/月)
    240
    200





    (甲,乙)
    (甲,丙)
    (甲,丁)

    (乙,甲)
    (乙,丙)
    (乙,丁)

    (丙,甲)
    (丙,乙)
    (丙,丁)

    (丁,甲)
    (丁,乙)
    (丁,丙)
    相关试卷

    2024-2025学年贵州省兴义市数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年贵州省兴义市数学九年级第一学期开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年广西钦州市钦南区数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年广西钦州市钦南区数学九年级第一学期开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年广西柳州市数学九上开学经典模拟试题【含答案】: 这是一份2024-2025学年广西柳州市数学九上开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map