2024-2025学年广东省肇庆市名校数学九年级第一学期开学质量检测试题【含答案】
展开
这是一份2024-2025学年广东省肇庆市名校数学九年级第一学期开学质量检测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)使二次根式有意义的x的取值范围是( ).
A.B.C.D.
2、(4分)某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y与时间x的关系的大致图象是
A.B.C.D.
3、(4分)将一副三角尺按如图的方式摆放,其中l1∥l2,则∠α的度数是( )
A.30°B.45°C.60°D.70°
4、(4分)若一个多边形的内角和为1080°,则这个多边形的边数为( )
A.6B.7C.8D.9
5、(4分)如图,在矩形ABCD中,对角线AC,BD相交于点O,若OA=2,则BD的长为( )
A.4B.3C.2D.1
6、(4分)2013年,某市发生了严重干旱,该市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图,则关于这10户家庭的月用水量,下列说法错误的是( )
A.众数是6B.极差是2C.平均数是6D.方差是4
7、(4分)如图,丝带重叠的部分一定是( )
A.菱形B.矩形C.正方形D.都有可能
8、(4分)在平面内,下列图案中,能通过图平移得到的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平行四边形ABCD中,以顶点A为圆心,AD长为半径,在AB边上截取AE=AD,用尺规作图法作出∠BAD的角平分线AG,若AD=5,DE=6,则AG的长是_________________.
10、(4分)在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过的象限是________.
11、(4分)已知是一元二次方程的两实根,则代数式_______.
12、(4分)当时,二次根式的值是 _________.
13、(4分)直线y1=k1x+b1(k1>0)与y2=k2x+b2(k2<0)相交于点(-2,0),且两直线与y轴围成的三角形面积为4,那么b1-b2等于________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知向量 、
求作:.
15、(8分)阅读下列材料:
数学课上,老师出示了这样一个问题:
如图,菱形和四边形,,连接,,.
求证:;
某学习小组的同学经过思考,交流了自己的想法:
小明:“通过观察分析,发现与存在某种数量关系”;
小强:“通过观察分析,发现图中有等腰三角形”;
小伟:“利用等腰三角形的性质就可以推导出”.
……
老师:“将原题中的条件‘’与结论‘’互换,即若,则,其它条件不变,即可得到一个新命题”.
……
请回答:
(1)在图中找出与线段相关的等腰三角形(找出一个即可),并说明理由;
(2)求证:;
(3)若,则是否成立?若成立,请证明;若不成立,请说明理由.
16、(8分)如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.
17、(10分)已知a,b分别是6的整数部分和小数部分.
(1)求a,b的值;
(2)求3ab2的值.
18、(10分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲乙两种型号的设备可供选购.经调查:购买3台甲型设备比购买2台乙型设备多花14万元,购买2台甲型设备比购买3台乙型设备少花4万元.
(1)直接写出甲乙两种型号设备每台的价格分别为多少万元;
(2)该公司经预算决定购买节省能源的新设备的资金不超过90万元,你认为该公司有几种购买方案?
(3)在(2)的条件下,若该公司使用新设备进行生产,已知甲型设备每台的产量为240吨/月,乙型设备每台的产量为180吨/月,每月要求总产量不低于2040吨,请你为该公司设计一种最省钱的购买方案.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一般地,在平面直角坐标系中,我们求点到直线间的距离,可用下面的公式求解:
点到直线的距离公式是:
如:求:点到直线的距离.
解:由点到直线的距离公式,得
根据平行线的性质,我们利用点到直线的距离公式,也可以求两平行线间的距离.
则两条平行线:和:间的距离是______.
20、(4分)已知边长为5cm的菱形,一条对角线长为6cm,则另一条对角线的长为________cm.
21、(4分)如图,它是个数值转换机,若输入的a值为,则输出的结果应为____.
22、(4分)比较大小:__________.(用不等号连接)
23、(4分)已知等腰三角形有两条边分别是3和7,则这个三角形的周长是_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线AB:y=﹣x﹣b分别与x、y轴交于A(6,0)、B两点.
(1)求直线AB的解析式;
(2)若P为A点右侧x轴上的一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角△BPQ,连接QA并延长交y轴于点K,当P点运动时,K点的位置是否发生变化?若不变,请求出它的坐标;如果变化,请说明理由.
25、(10分)(1)提出问题:如图1,在正方形中,点E,H分别在BC,AB上,若于点O,求证;;
(2)类比探究:如图2,在正方形中,点B,E,G,F分别在AB,BC,CD,DA上,若于点O,探究线段EF与HG的数量关系,并说明理由;
(3)综合运用:在(2)问条件下,,如图3所示,已知,,求图中阴影部分的面积。
26、(12分)菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD的交点E恰好在y轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2﹣9x+18=0的两根,请解答下列问题:
(1)求点D的坐标;
(2)若反比例函数y=(k≠0)的图象经过点H,则k= ;
(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
直接利用二次根式有意义的条件进而分析得出答案.
【详解】
依题意得:,
解得:.
故选:.
此题考查了二次根式的意义和性质.概念:式子叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
2、B
【解析】
图象应分三个阶段,
第一阶段:匀速跑步到公园,在这个阶段,离家的距离随时间的增大而增大;
第二阶段:在公园停留了一段时间,这一阶段离家的距离不随时间的变化而改变.故D错误;
第三阶段:沿原路匀速步行回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度小于于第一阶段的速度,则C错误.
故选B
考点:函数的图象
本题考查了函数的图象,理解每阶段中,离家的距离与时间的关系,根据图象的斜率判断运动的速度是解决本题的关键.
3、C
【解析】
先由两直线平行内错角相等,得到∠A=30°,再由直角三角形两锐角互余即可得到∠α的度数.
【详解】
解:如图所示,
∵l1∥l2,
∴∠A=∠ABC=30°,
又∵∠CBD=90°,
∴∠α=90°﹣30°=60°,
故选C.
此题考查了平行线的性质和直角三角形的性质.注意:两直线平行,内错角相等.
4、C
【解析】
多边形内角和定理.
【分析】设这个多边形的边数为n,由n边形的内角和等于110°(n﹣2),即可得方程110(n﹣2)=1010,
解此方程即可求得答案:n=1.故选C.
5、A
【解析】
因为矩形的对角线相等且互相平分,已知OA=2,则AC=2OA=4,又BD=AC,故可求.
【详解】
解:∵四边形ABCD是矩形
∴OC=OA,BD=AC
又∵OA=2,
∴AC=OA+OC=2OA=4
∴BD=AC=4
故选:A.
本题考查矩形的对角线的性质.熟练掌握矩形对角线相等且互相平分是解题的关键.
6、D
【解析】
众数是一组数据中出现次数最多的数,极差是数据中最大的与最小的数据的差,平均数是所有数据的和除以数据的个数,分别根据以上定义可分别求出众数,极差和平均数,然后根据方差的计算公式进行计算求出方差,即可得到答案.
【详解】
解:这组数据6出现了6次,最多,所以这组数据的众数为6;
这组数据的最大值为7,最小值为5,所以这组数据的极差=7﹣5=2;
这组数据的平均数=(5×2+6×6+7×2)=6;
这组数据的方差S2= [2•(5﹣6)2+6•(6﹣6)2+2•(7﹣6)2]=0.4;
所以四个选项中,A、B、C正确,D错误.
故选:D.
本题考查了方差的定义和意义:数据x1,x2,…xn,其平均数为,则其方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2];方差反映了一组数据在其平均数的左右的波动大小,方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定.也考查了平均数和众数以及极差的概念.
7、A
【解析】
首先可判断重叠部分为平行四边形,且两条丝带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.
【详解】
解:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,
所以AB∥CD,AD∥BC,AE=AF.
∴四边形ABCD是平行四边形.
∵S▱ABCD=BC•AE=CD•AF.
∴BC=CD,
∴四边形ABCD是菱形.
故选:A.
本题考查了平行四边形的判定和性质以及菱形的判定和性质,利用平行四边形的面积公式得到一组邻边相等是解题关键.
8、B
【解析】
把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移.
【详解】
解:观察四个选项,可知B选项为原图经过平移所得,形状和方向均未发生改变.
故选择B.
理解平移只改变位置,不改变图片的形状、大小和方向.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
首先证明线段AG与线段DE互相垂直平分,利用勾股定理求出AH即可解决问题;
【详解】
解:分别以D和E作为圆心,以略长于EH的长度为半径作弧,交于点F,连接AF并延长,交CD于G,则AG即为∠BAD的角平分线,
设AG交BD于H,则AG垂直平分线线段DE(等腰三角形三线合一),
∴DH=EH=3,
∵四边形ABCD是平行四边形,
∴CD∥AB,
∴∠AGD=∠GAB,
∵∠DAG=∠GAB,
∴∠DAG=∠DGA,
∴DA=DG,
∵DE⊥AG,
∴AH=GH(等腰三角形三线合一),
在Rt△ADH中,AH= ,
∴AG=2AH=1,
故答案为1.
本题考查作图-复杂作图、平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题;
10、第三象限
【解析】分析:
根据直线y=kx+b在平面直角坐标系中所经过象限与k、b值的关系进行分析解答即可.
详解:
∵直线y=kx+b经过第一、三、四象限,
∴k>0,b
相关试卷
这是一份2024-2025学年贵州省铜仁地区名校九上数学开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广东省肇庆市肇庆院附属中学数学九上开学复习检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广东省云浮市名校九上数学开学教学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。