2024-2025学年福建泉州安溪恒兴中学九年级数学第一学期开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)估计的值在下列哪两个整数之间( )
A.6和7之间B.7和8之间C.8和9之间D.无法确定
2、(4分)一个正n边形的每一个外角都是45°,则n=( )
A.7B.8C.9D.10
3、(4分)我们知道正五边形不能进行平面镶嵌,若将三个全等的正五边形按如图所示拼接在一起,那么图中的∠1的度数是( )
A.18°B.30°C.36°D.54°
4、(4分)下列二次根式中,与是同类二次根式的是
A.B.C.D.
5、(4分)下列式子中,属于最简二次根式的是( )
A.B.C.D.
6、(4分)一次函数的图象经过( )
A.第一、三、四象限B.第二、三、四象限
C.第一、二、三象限D.第一、二、四象限
7、(4分)要使分式有意义,则x的取值应满足( )
A.x≠2B.x=2C.x=1D.x≠1
8、(4分)如图,取一张长为、宽为的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边应满足的条件是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ADP为等腰三角形时,点P的坐标为_______________________________.
10、(4分)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=6cm,GH=8cm,则边AB的长是__________
11、(4分)若关于x的分式方程+2无解,则m的值为________.
12、(4分)一次函数y=2x+1的图象与x轴的交点坐标为______.
13、(4分)将点先向左平移6个单位,再向下平移4个单位得到点,则的坐标是__.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系中,是原点,的顶点、的坐标分别为、,反比例函数的图像经过点.
(1)求点的坐标;
(2)求的值.
(3)将沿轴翻折,点落在点处.判断点是否落在反比例函数的图像上,请通过计算说明理由.
15、(8分)已知反比例函数与一次函数y=kx+b的图象都经过点(-2,-1),且当x=3时这两个函数值相等.
(1)求这两个函数的解析式;
(2)直接写出当x取何值时,成立.
16、(8分)观察下列各式:①,②;③,…
(1)请观察规律,并写出第④个等式: ;
(2)请用含n(n≥1)的式子写出你猜想的规律: ;
(3)请证明(2)中的结论.
17、(10分)如图,已知是的中线,且
求证:
若,试求和的长
18、(10分)在平面直角坐标系xOy中,直线过点,直线:与直线交于点B,与x轴交于点C.
(1)求k的值;
(2)横、纵坐标都是整数的点叫做整点.
① 当b=4时,直接写出△OBC内的整点个数;
②若△OBC内的整点个数恰有4个,结合图象,求b的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知,点在边上,.过点作于点,以为一边在内作等边,点是围成的区域(包括各边)内的一点,过点作交于点,作交于点.设,,则最大值是_______.
20、(4分)如图,在△ABC中,P,Q分别为AB,AC的中点.若S△APQ=1,则S四边形PBCQ=__.
21、(4分)计算:__________.
22、(4分)如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是__.
23、(4分)如图,正方形的边长为5 cm,是边上一点,cm.动点由点向点运动,速度为2 cm/s ,的垂直平分线交于,交于.设运动时间为秒,当时,的值为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图所示,以△ABC的三边AB、BC、CA在BC的同侧作等边△ABD、△BCE、△CAF,请说明:四边形ADEF为平行四边形.
25、(10分)如图所示,□ABCD中,E、F分别是AB、CD上的点,AE=CF,M、N分别是DE、BF的中点.求证:四边形ENFM是平行四边形.
26、(12分)如图,已知正方形ABCD的对角线AC、BD交于点O,CE⊥AC与AD边的延长线交于点E.
(1)求证:四边形BCED是平行四边形;
(2)延长DB至点F,联结CF,若CF=BD,求∠BCF的大小.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
先判断在2和3之间,然后再根据不等式的性质判断即可.
【详解】
解:,
∵2<<3,
∴7<10﹣<8,
即的值在7和8之间.
故选B.
无理数的估算是本题的考点,判断出在2和3之间时解题的关键.
2、B
【解析】
根据正多边形的边数=360°÷每一个外角的度数,进行计算即可得解.
【详解】
解:n=360°÷45°=1.
故选:B.
本题考查了多边形的外角,熟记正多边形的边数、每一个外角的度数、以及外角和360°三者之间的关系是解题的关键.
3、C
【解析】
正多边形镶嵌有三个条件限制:①边长相等;②顶点公共;③在一个顶点处各正多边形的内角之和为360°.多边形内角和定理:(n-2)•180 (n≥3)且n为整数).
【详解】
解:正五边形的内角:(5-2)×180°÷5=108°,
∴∠1=360°-108°×3=36°,
故选:C.
此题考查平面镶嵌,熟练运用多边形内角和公式是解题的关键.
4、D
【解析】
先将各选项化简,再根据同类二次根式的定义解答.
【详解】
解:A、与被开方数不同,不是同类二次根式,故本选项错误;
B、=3是整数,故选项错误;
C、=与的被开方数不同,不是同类二次根式,故本选项错误;
D、与被开方数相同,是同类二次根式,故本选项正确.
故选:D.
本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.
5、D
【解析】
直接利用最简二次根式的定义分析得出答案.
【详解】
解:、,故此选项错误;
、,故此选项错误;
、,故此选项错误;
、是最简二次根式,故此选项正确.
故选:.
此题主要考查了最简二次根式,正确把握最简二次根式的定义是解题关键.
6、D
【解析】
由一次函数的解析式判断出k、b的值,再直接根据一次函数的性质进行解答即可.
【详解】
解:一次函数中,,,
此一次函数的图象经过一、二、象限.
故选:
本题考查一次函数的性质和直角坐标系,解题的关键是熟练掌握一次函数的性质.
7、A
【解析】
根据分式的性质,要使分式有意义,则分式的分母不等于0.
【详解】
根据题意可得要使分式有意义,则
所以可得
故选A.
本题主要考查分式的性质,关键在于分式的分母不能为0.
8、B
【解析】
由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,然后根据相似多边形的定义,列出比例式即可求出结论.
【详解】
解:由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,
∵小长方形与原长方形相似,
故选B.
此题考查的是相似三角形的性质,根据相似三角形的定义列比例式是解决此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、 (2,4),(8,4),(7,4),(7.5,4)
【解析】
分PD=DA,AD=PA,DP=PA三种情况讨论,再根据勾股定理求P点坐标
【详解】
当PD=DA
如图:以D为圆心AD长为半径作圆,与BD交P点,P'点,过P点作PE⊥OA于E点,过P'点作P'F⊥OA于F点,
∵四边形OABC是长方形,点A、C的坐标分别为A(10,0)、C(0,4),
∴AD=PD=5,PE=P'F=4
∴根据勾股定理得:DE=DF=
∴P(2,4),P'(8,4)
若AD=AP=5,同理可得:P(7,4)
若PD=PA,则P在AD的垂直平分线上,
∴P(7.5,4)
故答案为:(2,4),(8,4),(7,4),(7.5,4)
本题考查了等腰三角形的性质,勾股定理,利用分类思想解决问题是本题的关键.
10、.
【解析】
利用三个角是直角的四边形是矩形易证四边形EFGH为矩形,那么由折叠可得GE的长,进而求出HM,AB即为边2HM的长.
【详解】
解:∵∠HEM=∠HEB,∠GEF=∠CEF,∴∠HEF=∠HEM+∠GEF=∠BEG+∠GEC=×180°=90°,
同理可得:∠EHG=∠HGF=∠EFG=90°,
∴四边形EFGH为矩形,
∵EH=6cm,GH=8cm,
∴GE=10
由折叠可知,HM⊥GE,AH=HM,BH=HM,
∵,
∴AB=AH+BH=2HM=2×=.
故答案为.
此题主要考查了翻折变换的性质以及勾股定理等知识,得出四边形EFGH为矩形是解题关键.
11、1
【解析】
分析:把原方程去分母化为整式方程,求出方程的解得到x的值,由分式方程无解得到分式方程的分母为0,求出x的值,两者相等得到关于m的方程,求出方程的解即可得到m的值.
详解:
去分母得:x﹣2=m+2(x﹣3),整理得:x=4﹣m.
∵原方程无解,得到x﹣3=0,即x=3,∴4﹣m=3,解得:m=1.
故答案为1.
点睛:本题的关键是让学生理解分式方程无解就是分母等于0,同时要求学生掌握解分式方程的方法,以及转化思想的运用.学生在去分母时,不要忽略分母为1的项也要乘以最简公分母.
12、(-,0)
【解析】
令y=0可求得x的值,则可求得与x轴的交点坐标.
【详解】
解:令y=0,即2x+1=0,
解得:x=-,
∴一次函数y=2x+1的图象与x轴的交点坐标为(-,0).
故答案为:(-,0).
本题考查了一次函数与x轴的交点坐标.
13、
【解析】
根据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.
【详解】
解:将点A(4,3)先向左平移6个单位,再向下平移4个单位得到点A1,则A1的坐标是(4-6,3-4),即(-2,-1),
故答案为:(-2,-1).
本题考查了点的坐标平移,根据上加下减,右加左减,上下平移是纵坐标变化,左右平移是横坐标变化,熟记平移规律是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1);(2);(3)点不落在反比例函数图像上.
【解析】
(1)根据平行四边形的性质,可得的坐标;(2)已知的坐标,可得的值;(3)根据图形全等和对称,可得坐标,代入反比例函数,可判断是否在图像上.
【详解】
解:(1)∵平行四边形,
∴,
∵的坐标为,
∴,
∵的坐标为,
∴点的坐标为;
(2)把的坐标代入函数解析式得:,
∴.
(3)点不落在反比例函数图像上;
理由:根据题意得:的坐标为,
当时,,
∴点不落在反比例函数图像上.
本题综合考查平行四边形性质、反比例函数、图形翻折、全等等知识.
15、(1)一次函数的解析式为;反比例函数解析式为;(2)x<-2或0<x<3
【解析】
(1)先把点(-2,-1)代入y=,求出反比例函数解析式;再把x=3代入求出y的值,把点(-2,-1)和x=3时y的值代入一次函数解析式即可求出一次函数的解析式;
(2)找出反比例函数在一次函数图象上方对应的自变量的取值范围即可.
【详解】
解:∵反比例函数y=的图象经过(-2,-1),
∴-1=,即m=2,
∴反比例函数解析式为y=;
当x=3时,y=.
把(-2,-1)、(3,)代入y=kx+b,
得,
解得,
∴一次函数的解析式为y=x-;
(2)∵反比例函数y=与一次函数y=kx+b的图象交于点(-2,-1)、(3,),
由图象可知:当x<-2或0<x<3时,反比例函数在一次函数图象的上方,
∴当x<-2或0<x<3时,>kx+b成立.
本题考查了反比例函数与一次函数的交点问题,用待定系数法求一次函数及反比例函数的解析式,函数图象上点的坐标特征,数形结合思想.正确求出两个函数的解析式和画出图象是解题的关键.
16、(1) ;(2) ;(3)详见解析.
【解析】
试题分析:(1)认真观察题中所给的式子,得出其规律并根据规律写出第④个等式;
(2)根据规律写出含n的式子即可;
(3)结合二次根式的性质进行化简求解验证即可.
试题解析:(1)
(2)
(3)
故答案为(1)
17、(1)见解析;(2)
【解析】
(1)通过利用等角的补角相等得到,又已知,即可得证
(2)AD为中线,得到DC=4,又易证,利用比例式求出AC,再由(1)得到,列出比例式可得到AD
【详解】
证明:
解:是的中线
由得
本题主要考查相似三角形的判定与性质,第二问的关键在于找到相似三角形,利用对应边成比例求出线段
18、(1)k=2;(2)①有2个整点;②或.
【解析】
(1)把A(1,2)代入中可得k的值;
(2)①将b=4代入可得:直线解析式为y=-x+4,画图可得整点的个数;
②分两种情况:b>0时,b<0时,画图可得b的取值.
【详解】
解:(1)∵直线过点,
∴k=2;
(2)①将b=4代入可得:直线解析式为y=-x+4,画图可得整点的个数
如图:有2个整点;
②如图:
观察可得:或.
故答案为(1)k=2;(2)①有2个整点;②或.
本题考查了正比例函数与一次函数的交点问题:求正比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
过P作PH⊥OY于点H,构建含30°角的直角三角形,先证明四边形EODP是平行四边形,得EP=OD=a,在Rt△HEP中,由∠EPH=30°,可得EH的长,从而可得a+2b与OH的关系,确认OH取最大值时点H的位置,可得结论.
【详解】
解:过P作PH⊥OY于点H,
∵PD∥OY,PE∥OX,
∴四边形EODP是平行四边形,∠HEP=∠XOY=60°,
∴EP=OD=a,∠EPH=30°,
∴EH=EP=a,
∴a+2b=2()=2(EH+EO)=2OH,
∴当P在点B处时,OH的值最大,
此时,OC=OA=1,AC==BC,CH=,
∴OH=OC+CH=1+=,此时a+2b的最大值=2×=5.
故答案为5.
本题考查了等边三角形的性质、30°的直角三角形的性质和平行四边形的判定和性质,掌握求a+2b的最大值就是确定OH的最大值,即可解决问题.
20、1
【解析】
根据三角形的中位线定理得到PQ=BC,得到相似比为,再根据相似三角形面积之比等于相似比的平方,可得到结果.
【详解】
解:∵P,Q分别为AB,AC的中点,
∴PQ∥BC,PQ=BC,
∴△APQ∽△ABC,
∴ =()2=,
∵S△APQ=1,
∴S△ABC=4,
∴S四边形PBCQ=S△ABC﹣S△APQ=1,
故答案为1.
本题考查相似三角形的判定和性质,三角形中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
21、
【解析】
先把每个二次根式化简,然后合并同类二次根式即可。
【详解】
解:原式=2-
=
本题考查了二次根式的化简和运算,熟练掌握计算法则是关键。
22、1
【解析】
试题分析:先利用三角形中位线性质得到AB=4,然后根据菱形的性质计算菱形ABCD的周长.
∵E,F分别是AD,BD的中点, ∴EF为△ABD的中位线, ∴AB=2EF=4,
∵四边形ABCD为菱形, ∴AB=BC=CD=DA=4, ∴菱形ABCD的周长=4×4=1.
考点:(1)菱形的性质;(2)三角形中位线定理.
23、2
【解析】
连接ME,根据MN垂直平分PE,可得MP=ME,当时,BC=MP=5,所以可得EM=5,AE=3,可得AM=DP=4,即可计算出t 的值.
【详解】
连接ME
根据MN垂直平分PE
可得为等腰三角形,即ME=PM
故答案为2.
本题主要考查等腰三角形的性质,这类题目是动点问题的常考点,必须掌握方法.
二、解答题(本大题共3个小题,共30分)
24、证明见解析
【解析】
分析:由△ABD,△EBC都是等边三角形,易证得△DBE≌△ABC(SAS),则可得DE=AC,又由△ACF是等边三角形,即可得DE=AF,同理可证得AD=EF,即可判定四边形ADEF是平行四边形.
本题解析:
证明:∵△ABD,△EBC都是等边三角形,
∴AD=BD=AB,BC=BE=EC,
∠DBA=∠EBC=60°,
∴∠DBE+∠EBA=∠ABC+∠EBA,
∴∠DBE=∠ABC,
在△DBE和△ABC中,∵ ,
∴△DBE≌△ABC(SAS),
∴DE=AC,
又∵△ACF是等边三角形,
∴AC=AF,
∴DE=AF,
同理可证:AD=EF,
∴四边形ADEF是平行四边形.
25、见解析
【解析】
整体分析:
用一组对边平行且相等的四边形是平行四边形证明四边形DEBF是平行四边形,结合条件得到EM=FN即可求证.
证明:∵四边形ABCD是平行四边形,
∴AB//CD.
∵AE=CF,
∴FD=EB,
∴四边形DEBF是平行四边形,
∴DE//FB,DE=FB.
∵M、N分别是DE、BF的中点,
∴EM=FN.
∵DE//FB,
∴四边形MENF是平行四边形.
26、(1)见解析;(2)∠BCF=15°
【解析】
(1) 利用正方形的性质得出AC⊥DB,BC//AD,再利用平行线的判定与性质结合平行四边形的判定方法得出答案;
(2)利用正方形的性质结合直角三角形的性质得出∠OFC=30°,即可得出答案.
【详解】
解:(1)证明:∵ABCD是正方形,
∴AC⊥DB,BC∥AD
∵CE⊥AC
∴∠AOD=∠ACE=90°
∴BD∥CE
∴BCED是平行四边形
(2)如图:连接AF,
∵ABCD是正方形,
∴BD⊥AC,BD=AC=2OB=2OC,
即OB=OC
∴∠OCB=45°
∵ Rt△OCF中, CF=BD=2OC,
∴∠OFC=30°
∴∠BCF=60°-45°=15°
本题考查了正方形的性质以及平行四边形的判定和直角三角形的性质,掌握正方形的性质是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
福建泉州安溪恒兴中学2023-2024学年数学九上期末联考试题含答案: 这是一份福建泉州安溪恒兴中学2023-2024学年数学九上期末联考试题含答案,共7页。试卷主要包含了方程的解是等内容,欢迎下载使用。
福建泉州安溪恒兴中学2023-2024学年九上数学期末联考试题含答案: 这是一份福建泉州安溪恒兴中学2023-2024学年九上数学期末联考试题含答案,共8页。试卷主要包含了已知,则的值是等内容,欢迎下载使用。
2023-2024学年福建泉州安溪恒兴中学八上数学期末学业质量监测模拟试题含答案: 这是一份2023-2024学年福建泉州安溪恒兴中学八上数学期末学业质量监测模拟试题含答案,共8页。