所属成套资源:新高考数学二轮复习讲义+分层训练专题 (2份打包,原卷版+解析版)
新高考数学二轮复习讲义+分层训练专题22 概率与统计专项训练(2份打包,原卷版+解析版)
展开
这是一份新高考数学二轮复习讲义+分层训练专题22 概率与统计专项训练(2份打包,原卷版+解析版),文件包含新高考数学二轮复习讲义+分层训练专题22概率与统计专项训练原卷版doc、新高考数学二轮复习讲义+分层训练专题22概率与统计专项训练解析版doc等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.
1.(2023·全国·模拟预测)随着北京冬奥会的开幕,吉祥物“冰墩墩”火遍国内外,现有甲、乙、丙、丁4名运动员要与1个“冰墩墩”站成一排拍照留恋,已知“冰墩墩”在最中间,甲、乙、丙、丁4名运动员随机站于两侧,则甲、乙2名运动员站“冰墩墩”同一侧的概率为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
2.(2023·全国·模拟预测)已知一组数据: SKIPIF 1 < 0 的平均数是4,方差是2,则由 SKIPIF 1 < 0 和11这四个数据组成的新数据组的方差是( )
A.27B. SKIPIF 1 < 0 C.12D.11
3.(2023·四川凉山·统考一模)从某中学甲、乙两班各随机抽取10名同学的数学成绩,所得数据用茎叶图表示如下.由此可估计甲,乙两班同学的数学成绩情况,则下列结论正确的是( )
A.甲班数学成绩的中位数比乙班大
B.甲班数学成绩的平均值比乙班小
C.甲乙两班数学成绩的极差相等
D.甲班数学成绩的方差比乙班大
4.(2023·四川成都·统考一模)下图为2012年─2021年我国电子信息制造业企业和工业企业利润总额增速情况折线图,根据该图,下列结论正确的是( )
A.2012年─2021年电子信息制造业企业利润总额逐年递增
B.2012年─2021年工业企业利润总额逐年递增
C.2012年─2017年电子信息制造业企业利润总额均较上一年实现增长,且其增速均快于当年工业企业利润总额增速
D.2012年─2021年工业企业利润总额增速的均值大于电子信息制造业企业利润总额增速的均值
5.(2023·四川内江·统考一模)此次流行的冠状病毒为一种新发现的冠状病毒,国际病毒分类委员会命名为 SKIPIF 1 < 0 .因为人群缺少对新型病毒株的免疫力,所以人群普遍易感.为了解某中学对新冠疫情防控知识的宣传情况,增强学生日常防控意识,现从该校随机抽取 SKIPIF 1 < 0 名学生参加防控知识测试,得分( SKIPIF 1 < 0 分制)如图所示,以下结论中错误的是( )
A.这 SKIPIF 1 < 0 名学生测试得分的中位数为 SKIPIF 1 < 0
B.这 SKIPIF 1 < 0 名学生测试得分的众数为 SKIPIF 1 < 0
C.这 SKIPIF 1 < 0 名学生测试得分的平均数比中位数大
D.从这 SKIPIF 1 < 0 名学生的测试得分可预测该校学生对疫情防控的知识掌握较好
6.(2023·安徽淮南·统考一模)为迎接北京 SKIPIF 1 < 0 年冬奥会,小王选择以跑步的方式响应社区开展的“喜迎冬奥爱上运动”(如图)健身活动.依据小王 SKIPIF 1 < 0 年 SKIPIF 1 < 0 月至 SKIPIF 1 < 0 年 SKIPIF 1 < 0 月期间每月跑步的里程(单位:十公里)数据,整理并绘制的折线图(如图),根据该折线图,下列结论正确的是( )
A.月跑步里程逐月增加
B.月跑步里程的极差小于 SKIPIF 1 < 0
C.月跑步里程的中位数为 SKIPIF 1 < 0 月份对应的里程数
D. SKIPIF 1 < 0 月至 SKIPIF 1 < 0 月的月跑步里程的方差相对于 SKIPIF 1 < 0 月至 SKIPIF 1 < 0 月的月跑步里程的方差更大
7.(2022·四川达州·统考一模)四川省将从2022年秋季入学的高一年级学生开始实行高考综合改革,高考采用“3+1+2”模式,其中“1”为首选科目,即物理与历史二选一.某校为了解学生的首选意愿,对部分高一学生进行了抽样调查,制作出如下两个等高条形图,根据条形图信息,下列结论正确的是( )
A.样本中选择物理意愿的男生人数少于选择历史意愿的女生人数
B.样本中女生选择历史意愿的人数多于男生选择历史意愿的人数
C.样本中选择物理学科的人数较多
D.样本中男生人数少于女生人数
8.(2022·云南昆明·昆明一中校考模拟预测)如图所示某城区的一个街心花园,共有五个区域,中心区域E已被设计为代表城市特点的一个标志性塑像,要求在周围ABCD四个区域中种植鲜花,现有四个品种的鲜花可供选择,要求每个区域只种一个品种且相邻区域所种品种不同,则不同的种植方法的种数为( )
A.12B.24C.48D.84
二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.
9.(2023·全国·模拟预测)空气质量指数大小分为五级.指数越大说明污染的情况越严重,对人体危害越大,指数范围 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 分别对应“优”“良”“轻度污染”“中度污染”“重污染”五个等级.如图是某市连续 SKIPIF 1 < 0 天的空气质量指数趋势图,下面说法正确的是( )
A.这 SKIPIF 1 < 0 天中有 SKIPIF 1 < 0 天空气质量指数为“轻度污染”
B.从 SKIPIF 1 < 0 日到 SKIPIF 1 < 0 日空气质量越来越好
C.这 SKIPIF 1 < 0 天中空气质量的中位数是 SKIPIF 1 < 0
D.连续三天中空气质量指数方差最小是 SKIPIF 1 < 0 日到 SKIPIF 1 < 0 日
10.(2023·安徽·校联考模拟预测)某中学全体学生参加了数学竞赛,随机抽取了 SKIPIF 1 < 0 名学生的成绩进行统计(满分100分),并绘制成如图所示的频率分布直方图(分为 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 六组),若成绩在 SKIPIF 1 < 0 内的有360人,则下列说法正确的是(同一组中的数据用该组区间的中点值代表)( )
A.a=0.025
B. SKIPIF 1 < 0
C.估计成绩在60分以下的有150人
D.估计这 SKIPIF 1 < 0 名学生的平均成绩为70分
11.(2022·广东韶关·统考一模)某电视传媒机构为了解某地区电视观众对某类体育节目的收视情况,随机抽取了200名观众进行调查,其中女性占40%.根据调查结果分别绘制出男、女观众两周时间收看该类体育节目时长的频率分布直方图,则( )
A. SKIPIF 1 < 0
B.女观众收看节目时长的中位数为6.5小时
C.女观众收看节目的平均时长小于男观众的平均时长
D.收看节目不少于9小时观众中的女观众人数是男观众人数的 SKIPIF 1 < 0
12.(2022·湖南郴州·安仁县第一中学校考模拟预测)下列说法正确的是( )
A.系统抽样在起始部分抽样时不能采用简单随机抽样;
B.标准差描述了一组数据围绕平均数波动的大小,标准差越大,数据的离散程度就越大;
C.用相关系数 SKIPIF 1 < 0 判断线性相关强度,当 SKIPIF 1 < 0 越接近于1,变量的线性相关程度越强;
D.相对样本点 SKIPIF 1 < 0 的随机误差是 SKIPIF 1 < 0 .
三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.
13.(2023·上海·统考模拟预测)已知有4名男生6名女生,现从10人中任选3人,则恰有1名男生2名女生的概率为_____________.
14.(2023·江西景德镇·统考模拟预测)由于夏季炎热某小区用电量过大,据统计一般一天停电的概率为0.3,现在用数据0、1、2表示停电;用3、4、5、6、7、8、9表示当天不停电,现以两个随机数为一组,表示连续两天停电情况,经随机模拟得到以下30组数据,
28 21 79 14 56 74 06 89 53 90 14 57 62 30 93
78 63 44 71 28 67 03 53 82 47 23 10 94 02 43
根据以上模拟数据估计连续两天中恰好有一天停电的概率为________.
15.(2022·四川绵阳·四川省绵阳南山中学校考二模)如图,将半径为1分米的圆分成相等的四段弧,再将四段弧围成星形放在圆内(阴影部分).现在往圆内任投100颗豆子,则落在星形区域内的豆子数大约为______________.
16.(2022·上海虹口·统考一模)第5届中国国际进口博览会在上海举行,某高校派出了包括甲同学在内的4名同学参加了连续5天的志愿者活动.已知甲同学参加了2天的活动,其余同学各参加了1天的活动,则甲同学参加连续两天活动的概率为______.(结果用分数表示)
四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.
17.(2023·全国·模拟预测)第24届冬奥会于2022年2月4日在北京市和张家口市联合举行,此项赛事大大激发了国人冰雪运动的热情.某滑雪场在冬奥会期间开业,下表统计了该滑雪场开业第 SKIPIF 1 < 0 天的滑雪人数 SKIPIF 1 < 0 (单位:百人)的数据.
经过测算,若一天中滑雪人数超过3500人时,当天滑雪场可实现盈利,请建立 SKIPIF 1 < 0 关于 SKIPIF 1 < 0 的回归方程,并预测该滑雪场开业的第几天开始盈利.
参考公式:线性回归方程 SKIPIF 1 < 0 的斜率和截距的最小二乘法估计分别为 SKIPIF 1 < 0 .
18.(2023·四川成都·统考一模)成都作为常住人口超 SKIPIF 1 < 0 万的超大城市,注册青年志愿者人数超 SKIPIF 1 < 0 万,志愿服务时长超 SKIPIF 1 < 0 万小时. SKIPIF 1 < 0 年 SKIPIF 1 < 0 月,成都 SKIPIF 1 < 0 个市级部门联合启动了 SKIPIF 1 < 0 年成都市青年志愿服务项目大赛,项目大赛申报期间,共收到 SKIPIF 1 < 0 个主体的 SKIPIF 1 < 0 个志愿服务项目,覆盖文明实践、社区治理与邻里守望、环境保护等 SKIPIF 1 < 0 大领域.已知某领域共有 SKIPIF 1 < 0 支志愿队伍申报,主管部门组织专家对志愿者申报队伍进行评审打分,并将专家评分(单位:分)分成 SKIPIF 1 < 0 组: SKIPIF 1 < 0 ,得到如图所示的频率分布直方图.
(1)求图中 SKIPIF 1 < 0 的值;
(2)从评分不低于 SKIPIF 1 < 0 分的队伍中随机选取 SKIPIF 1 < 0 支队伍,该 SKIPIF 1 < 0 支队伍中评分不低于 SKIPIF 1 < 0 分的队伍数为 SKIPIF 1 < 0 ,求随机变量 SKIPIF 1 < 0 的分布列和期望.
19.(2023·四川凉山·统考一模)2022年卡塔尔世界杯(英语:FIFA Wrld Cup Qatar2022)是第二十二届世界杯足球赛,是历史上首次在卡塔尔和中东国家境内举行,也是继2002年韩日世界杯之后时隔二十年第二次在亚洲举行的世界杯足球赛,除此之外,卡塔尔世界杯还是首次在北半球冬季举行,第二次世界大战后首次由从未进过世界杯的国家举办的世界杯足球赛.为了解某校学生对足球运动的兴趣,随机从该校学生中抽取了100人进行调查,其中女生中对足球运动没兴趣的占女生人数的 SKIPIF 1 < 0 ,男生有5人表示对足球运动没有兴趣.
(1)完成 SKIPIF 1 < 0 列联表,并回答能否有 SKIPIF 1 < 0 的把握认为“该校学生对足球是否有兴趣与性别有关”?
(2)从样本中对足球没有兴趣的学生按性别分层抽样的方法抽出6名学生,记从这6人中随机抽取3人,抽到的男生人数为 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的分布列和期望
SKIPIF 1 < 0 , SKIPIF 1 < 0
20.(2023·四川绵阳·统考模拟预测)某县依托种植特色农产品,推进产业园区建设,致富一方百姓.已知该县近 SKIPIF 1 < 0 年人均可支配收入如下表所示,记 SKIPIF 1 < 0 年为 SKIPIF 1 < 0 , SKIPIF 1 < 0 年为 SKIPIF 1 < 0 ,…以此类推.
(1)使用两种模型:① SKIPIF 1 < 0 ;② SKIPIF 1 < 0 的相关指数 SKIPIF 1 < 0 分别约为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,请选择一个拟合效果更好的模型,并说明理由;
(2)根据(1)中选择的模型,试建立 SKIPIF 1 < 0 关于 SKIPIF 1 < 0 的回归方程.(保留 SKIPIF 1 < 0 位小数)
附:回归方程 SKIPIF 1 < 0 中斜率和截距的最小二乘估计公式分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
参考数据: SKIPIF 1 < 0 ,令 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
21.(2023·湖南永州·统考二模)当前,新冠病毒致死率低,但传染性较强.经初步统计,体质好的人感染呈显性(出现感染症状)或呈隐性(无感染症状)的概率都是 SKIPIF 1 < 0 ,体质不好的人(易感人群)感染会呈显性,感染后呈显性与呈隐性的传染性相同,且人感染后在相当一段时期内不会二次感染.现有甲乙丙三位专家要当面开个小型研究会,其中甲来源地人群的感染率是 SKIPIF 1 < 0 ,乙来源地人群的感染率是 SKIPIF 1 < 0 ,丙来源地无疫情,甲乙两人体质很好,丙属于易感人群,参会前三人都没有感染症状,只确定丙未感染.会议期间,三人严格执行防疫措施,能隔断 SKIPIF 1 < 0 的病毒传播,且会议期间不管谁感染,会议都要如期进行,用频率估计概率.
(1)求参会前甲已感染的概率;
(2)若甲参会前已经感染,丙在会议期间被感染,求丙感染是因为乙传染的概率;
(3)若参会前甲已感染,而乙、丙均未感染,设会议期间乙、丙两人中感染的人数为随机变量 SKIPIF 1 < 0 ,求随机变量 SKIPIF 1 < 0 的分布列与期望.
22.(2023·河北衡水·河北衡水中学校考模拟预测)为提高核酸检测效率,某医学实验室现准备采用某种检测新冠肺炎病毒核酸的新型技术进行新一轮大规模核酸筛查.经过初步统计分析得出该项技术的错检率约为0.04,漏检率约为0.01.(错检率指在检测出阳性的情况下未感染的概率,漏检率指在感染的情况下检测出阴性的概率)
(1)当有100个人检测出核酸阳性时,求预计检出的假阳性人数;
(2)为节约成本,实验室在该技术的基础上采用“混采”的方式对个别疫区进行核酸检测,即将n个人的样本装进一根试管内送检;若某组检测出核酸阳性,则对这n个人分别进行单人单试管核酸采样.现对两个疫区的居民进行核酸检测,A疫区共有10000名居民,采用 SKIPIF 1 < 0 的混采策略;B疫区共有20000名居民,采用 SKIPIF 1 < 0 的混采策略.已知两个疫区每个居民感染新冠肺炎的概率相等且均小于0.00032,通过计算比较A、B两个疫区核酸检测预计消耗试管数量.
参考数据: SKIPIF 1 < 0 , SKIPIF 1 < 0
天数代码 SKIPIF 1 < 0
1
2
3
4
5
滑雪人数 SKIPIF 1 < 0 (百人)
9
11
14
26
20
有兴趣
没兴趣
合计
男
60
女
合计
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
年份
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
年份代号 SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
人均可支配收入 SKIPIF 1 < 0 (万元)
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
相关试卷
这是一份新高考数学二轮复习分层训练专题24 高考排列组合的技巧(2份打包,原卷版+解析版),文件包含新高考数学二轮复习分层训练专题24高考排列组合的技巧原卷版doc、新高考数学二轮复习分层训练专题24高考排列组合的技巧解析版doc等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
这是一份新高考数学二轮复习分层训练专题22 抛物线(2份打包,原卷版+解析版),文件包含新高考数学二轮复习分层训练专题22抛物线原卷版doc、新高考数学二轮复习分层训练专题22抛物线解析版doc等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
这是一份新高考数学二轮复习分层训练专题21 双曲线(2份打包,原卷版+解析版),文件包含新高考数学二轮复习分层训练专题21双曲线原卷版doc、新高考数学二轮复习分层训练专题21双曲线解析版doc等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。