所属成套资源:新高考数学一轮复习学案(2份打包,原卷版+解析版)
新高考数学一轮复习学案第32讲 概率与统计综合问题(2份打包,原卷版+解析版)
展开
这是一份新高考数学一轮复习学案第32讲 概率与统计综合问题(2份打包,原卷版+解析版),文件包含新高考数学一轮复习学案第32讲概率与统计综合问题原卷版doc、新高考数学一轮复习学案第32讲概率与统计综合问题解析版doc等2份学案配套教学资源,其中学案共40页, 欢迎下载使用。
附:(1)数据 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,… SKIPIF 1 < 0 的方差 SKIPIF 1 < 0 ,(2)若随机变量 SKIPIF 1 < 0 服从正态分布 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ; SKIPIF 1 < 0 ; SKIPIF 1 < 0 .
(1)请根据以上信息,求所捕捞100条鱼儿质量的平均数 SKIPIF 1 < 0 和方差 SKIPIF 1 < 0 ;
(2)根据以往经验,可以认为该鱼塘鱼儿质量 SKIPIF 1 < 0 服从正态分布 SKIPIF 1 < 0 ,用 SKIPIF 1 < 0 作为 SKIPIF 1 < 0 的估计值,用 SKIPIF 1 < 0 作为 SKIPIF 1 < 0 的估计值.随机从该鱼塘捕捞一条鱼,其质量在 SKIPIF 1 < 0 的概率是多少?
(3)某批发商从该村鱼塘购买了5000条鱼,若从该鱼塘随机捕捞,记 SKIPIF 1 < 0 为捕捞的鱼儿质量在 SKIPIF 1 < 0 的条数,利用(2)的结果,求 SKIPIF 1 < 0 的数学期望.
2.(2022·全国·模拟预测)交通信号灯中的红灯与绿灯交替出现.某汽车司机在某一线路的行驶过程要经过 SKIPIF 1 < 0 两段路,若已知 SKIPIF 1 < 0 路段共要过 SKIPIF 1 < 0 个交通岗,且经过交通岗时遇到红灯或绿灯是相互独立的,每次遇到红灯的概率为 SKIPIF 1 < 0 ,遇到绿灯的概率为 SKIPIF 1 < 0 ,在 SKIPIF 1 < 0 路段的行驶过程中,首个交通岗遇到红灯的概率为 SKIPIF 1 < 0 ,且上一交通岗遇到红灯,则下一交通岗遇到红灯的概率为 SKIPIF 1 < 0 ,遇到绿灯的概率为 SKIPIF 1 < 0 ;若上一交通岗遇到绿灯,则下一交通岗遇到红灯的概率为 SKIPIF 1 < 0 ,遇到绿灯的概率为 SKIPIF 1 < 0 ,记 SKIPIF 1 < 0 段线路中第 SKIPIF 1 < 0 个交通岗遇到红灯的概率为 SKIPIF 1 < 0 .
(1)求该司机在 SKIPIF 1 < 0 路段的行驶过程中遇到红灯次数 SKIPIF 1 < 0 的分布列与期望;
(2)①求该司机在 SKIPIF 1 < 0 路段行驶过程中第 SKIPIF 1 < 0 个交通岗遇到红灯的概率 SKIPIF 1 < 0 的通项公式;
②试判断在最后离开 SKIPIF 1 < 0 路段时的最后一个交通岗遇到红灯的概率大于 SKIPIF 1 < 0 ,还是小于 SKIPIF 1 < 0 ,请用数据说明.
3.(2022·全国·模拟预测)千百年来,人们一直在通过不同的方式传递信息.在古代,烽火狼烟、飞鸽传书、快马驿站等通信方式被人们广泛应用;第二次工业革命后,科技的进步带动了电讯事业的发展,电报电话的发明让通信领域发生了翻天覆地的变化;之后,计算机和互联网的出现则使得“千里眼”“顺风耳”变为现实.现在, SKIPIF 1 < 0 的到来给人们的生活带来颠覆性的变革,某科技创新公司基于领先技术的支持, SKIPIF 1 < 0 经济收入在短期内逐月攀升,该创新公司在第 SKIPIF 1 < 0 月份至6月份的 SKIPIF 1 < 0 经济收入 SKIPIF 1 < 0 (单位:百万元)关于月份 SKIPIF 1 < 0 的数据如表:
根据以上数据绘制散点图,如图.
(1)根据散点图判断, SKIPIF 1 < 0 与 SKIPIF 1 < 0 均为常数)哪一个适宜作为 SKIPIF 1 < 0 经济收入 SKIPIF 1 < 0 关于月份 SKIPIF 1 < 0 的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的结果及表中的数据,求出 SKIPIF 1 < 0 关于 SKIPIF 1 < 0 的回归方程,并预测该公司8月份的 SKIPIF 1 < 0 经济收入;
(3)从前6个月的收入中抽取 SKIPIF 1 < 0 个﹐记月收入超过 SKIPIF 1 < 0 百万的个数为 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的分布列和数学期望.
参考数据:
其中设 SKIPIF 1 < 0
参考公式和数据:对于一组具有线性相关关系的数据 SKIPIF 1 < 0 ,其回归直线 SKIPIF 1 < 0 时间(月份)
1
2
3
4
5
6
收入(百万元)
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
的斜率和截距的最小二乘估计公式分别为: SKIPIF 1 < 0 , SKIPIF 1 < 0
4.(2022·全国·高三专题练习)在一个系统中,每一个设备能正常工作的概率称为设备的可靠度,而系统能正常工作的概率称为系统的可靠度,为了增加系统的可靠度,人们经常使用“备用冗余设备”(即正在使用的设备出故障时才启动的设备).已知某计算机网络服务器系统采用的是“一用两备”(即一台正常设备,两台备用设备)的配置,这三台设备中,只要有一台能正常工作,计算机网络就不会断掉.设三台设备的可靠度均为 SKIPIF 1 < 0 ,它们之间相互不影响.
(1)当 SKIPIF 1 < 0 时,求能正常工作的设备数 SKIPIF 1 < 0 的分布列和数学期望;
(2)已知深圳某高科技产业园当前的计算机网络中每台设备的可靠度是 SKIPIF 1 < 0 ,根据以往经验可知,计算机网络断掉可能给该产业园带来约50万的经济损失.为减少对该产业园带来的经济损失,有以下两种方案:方案1:更换部分设备的硬件,使得每台设备的可靠度维持在 SKIPIF 1 < 0 ,更新设备硬件总费用为8万元;方案2:对系统的设备进行维护,使得设备可靠度维持在 SKIPIF 1 < 0 ,设备维护总费用为5万元.请从期望损失最小的角度判断决策部门该如何决策?
5.(2022·全国·高三专题练习)某城市美团外卖配送员底薪是每月1 800元,设每月配送单数为X,若X∈[1,300],每单提成3元,若X∈(300,600],每单提成4元,若X∈(600,+∞),每单提成4.5元,饿了么外卖配送员底薪是每月2 100元,设每月配送单数为Y,若Y∈[1,400],每单提成3元,若Y∈(400,+∞),每单提成4元,小王想在美团外卖和饿了么外卖之间选择一份配送员工作,他随机调查了美团外卖配送员甲和饿了么外卖配送员乙在2019年4月份(30天)的送餐量数据,如下表:
表1:美团外卖配送员甲送餐量统计
表2:饿了么外卖配送员乙送餐量统计
(1)设美团外卖配送员月工资为f (X),饿了么外卖配送员月工资为g(Y),当X=Y∈(300,600]时,比较f (X)与g(Y)的大小关系;日送餐量x(单)
13
14
16
17
18
20
天数
2
6
12
6
2
2
日送餐量y(单)
11
13
14
15
16
18
天数
4
5
12
3
5
1
(2)将4月份的日送餐量的频率视为日送餐量的概率.
①计算外卖配送员甲和乙每日送餐量的均值E(x)和E(y);
②请利用所学的统计学知识为小王作出选择,并说明理由.
6.(2022·全国·高三专题练习)2021年7月18日第30届全国中学生生物学竞赛在浙江省萧山中学隆重举行.为做好本次考试的评价工作,将本次成绩转化为百分制,现从中随机抽取了50名学生的成绩,经统计,这批学生的成绩全部介于40至100之间,将数据按照 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 分成6组,制成了如图所示的频率分布直方图.
(1)求频率分布直方图中 SKIPIF 1 < 0 的值,并估计这50名学生成绩的中位数;
(2)在这50名学生中用分层抽样的方法从成绩在 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 的三组中抽取了11人,再从这11人中随机抽取3人,记 SKIPIF 1 < 0 为3人中成绩在 SKIPIF 1 < 0 , SKIPIF 1 < 0 的人数,求 SKIPIF 1 < 0 的分布列和数学期望;
(3)转化为百分制后,规定成绩在 SKIPIF 1 < 0 , SKIPIF 1 < 0 的为 SKIPIF 1 < 0 等级,成绩在 SKIPIF 1 < 0 , SKIPIF 1 < 0 的为 SKIPIF 1 < 0 等级,其它为 SKIPIF 1 < 0 等级.以样本估计总体,用频率代替概率,从所有参加生物学竞赛的同学中随机抽取100人,其中获得 SKIPIF 1 < 0 等级的人数设为 SKIPIF 1 < 0 ,记 SKIPIF 1 < 0 等级的人数为 SKIPIF 1 < 0 的概率为 SKIPIF 1 < 0 ,写出 SKIPIF 1 < 0 的表达式,并求出当 SKIPIF 1 < 0 为何值时, SKIPIF 1 < 0 最大?
7.(2022·全国·高三专题练习)某学校组建了由2名男选手和n名女选手组成的“汉字听写大会”集训队,每次参赛均从集训队中任意选派2名选手参加省队选拔赛.
(1)若n=2,记某次选派中被选中的男生人数为随机变量X,求随机变量X的概率分布和数学期望;
(2)若n≥2,该校要参加三次“汉字听写大会”,每次从集训队中选2名选手参赛,求n为何值时,三次比赛恰有一次参赛学生性别相同的概率取得最大值.
8.(2022·全国·高三专题练习)女排精神是中国女子排球队顽强战斗、勇敢拼搏精神的总概括.其具体表现为:扎扎实实,勤学苦练,无所畏惧,顽强拼搏,同甘共苦,团结战斗,刻苦钻研,勇攀髙峰.甲、乙两支女子排球队进行排球比赛,每场比赛采用“5局3胜制”(即有一支球队先胜3局即获胜,比赛结束).假设在每局比赛中,甲队获胜的概率为 SKIPIF 1 < 0 ,乙队获胜的概率为 SKIPIF 1 < 0 ,各局比赛的结果相互独立.
(1)求乙队获胜的概率;
(2)设比赛结束时甲队和乙队共进行了X局比赛,求随机变量X的分布列及数学期望.
9.(2022·全国·高三专题练习(理))1.第32届夏季奥林匹克运动会于2021年7月23日至8月8日在日本东京举办,某国男子乒乓球队为备战本届奥运会,在某训练基地进行封闭式训练,甲、乙两位队员进行对抗赛,每局依次轮流发球,连续赢2个球者获胜,通过分析甲、乙过去对抗赛的数据知,甲发球甲赢的概率为 SKIPIF 1 < 0 ,乙发球甲赢的概率为 SKIPIF 1 < 0 ,不同球的结果互不影响,已知某局甲先发球.
(1)求该局打4个球甲赢的概率;
(2)求该局打5个球结束的概率.
10.(2022·全国·高三专题练习)某市为迎接全国中学生物理奥林匹克竞赛举行全市选拔赛.大赛分初试和复试.初试又分笔试和实验操作两部分进行,初试部分考试成绩只记“合格”与“不合格”.只有两部分考试都“合格”者才能进入下一轮的复试.在初试部分,甲、乙、丙三人在笔试中“合格”的概率依次为 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,在实验操作考试中“合格”的概率依次为 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,所有考试是否合格相互之间没有影响
(1)甲、乙、丙三人同时进行笔试与实验操作两项考试,分别求三人进入复试的的概率,并判断谁获得下一轮复试的可能性最大;
(2)这三人进行笔试与实验操两项考试后,求恰有两人进入下一轮复试的概率.
11.(2022·全国·高三专题练习)某蔬菜批发商分别在甲、乙两个市场销售某种蔬菜(两个市场的销售互不影响),已知该蔬菜每售出1吨获利500元,未售出的蔬菜降价处理,每吨亏损100元.现分别统计该蔬菜在甲、乙两个市场以往100个周期的市场需求量,制成频数分布条形图如下:
以市场需求量的频率代替需求量的概率.设批发商在下个销售周期购进 SKIPIF 1 < 0 吨该蔬菜,在甲、乙两个市场同时销售,以 SKIPIF 1 < 0 (单位:吨)表示下个销售周期两个市场的总需求量, SKIPIF 1 < 0 (单位:元) 表示下个销售周期两个市场的销售总利润.
(1)求变量 SKIPIF 1 < 0 概率分布列;
(2)当 SKIPIF 1 < 0 时,求 SKIPIF 1 < 0 与 SKIPIF 1 < 0 的函数解析式,并估计销售利润不少于8900元的概率;
(3)以销售利润的期望作为决策的依据,判断 SKIPIF 1 < 0 与 SKIPIF 1 < 0 应选用哪一个.
12.(2022·全国·高三专题练习)假设在A军与B军的某次战役中,A军有8位将领,善用骑兵的将领有5人;B军有8位将领,善用骑兵的将领有4人.
(1)现从A军将领中随机选取4名将领,求至多有3名是善用骑兵的将领的概率;
(2)在A军和B军的将领中各随机选取2人,X为善用骑兵的将领的人数,写出X的分布列,并求 SKIPIF 1 < 0 .
13.(2022·全国·高三专题练习)2020年是比较特殊的一年,延期一个月进行的高考在万众瞩目下顺利举行并安全结束.在备考期间,某教育考试研究机构举办了多次的跨地域性的联考,在最后一次大型联考结束后,经统计分析发现,学生的模拟测试成绩 SKIPIF 1 < 0 服从正态分布 SKIPIF 1 < 0 (满分为750分).已知 SKIPIF 1 < 0 , SKIPIF 1 < 0 .现在从参加联考的学生名单库中,随机抽取4名学生.
(1)求抽到的4名学生中,恰好有2名学生的成绩落在区间 SKIPIF 1 < 0 内,2名学生的成绩落在区间 SKIPIF 1 < 0 内的概率;
(2)用 SKIPIF 1 < 0 表示抽取的4名同学的成绩落在区间 SKIPIF 1 < 0 内的人数,求 SKIPIF 1 < 0 的分布列和数学期望 SKIPIF 1 < 0 .
14.(2022·全国·高三专题练习)某单位有员工50000人,一保险公司针对该单位推出一款意外险产品,每年每位职工只需要交少量保费,发生意外后可一次性获得若干赔偿金.保险公司把该单位的所有岗位分为 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 三类工种,从事三类工种的人数分布比例如饼图所示,且这三类工种每年的赔付概率如下表所示:
对于 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 三类工种,职工每人每年保费分别为 SKIPIF 1 < 0 元、 SKIPIF 1 < 0 元、 SKIPIF 1 < 0 元,出险后的赔偿金额分别为100万元、100万元、50万元,保险公司在开展此项业务过程中的固定支出为每年20万元.
(1)若保险公司要求每年收益的期望不低于保费的 SKIPIF 1 < 0 ,证明: SKIPIF 1 < 0 .工种类别
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
赔付概率
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
(2)现有如下两个方案供单位选择:方案一:单位不与保险公司合作,职工不交保险,出意外后单位自行拿出与保险公司提供的等额赔偿金赔付给出意外的职工,单位开展这项工作的固定支出为每年35万元;方案二:单位与保险公司合作, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,单位负责职工保费的 SKIPIF 1 < 0 ,职工个人负责 SKIPIF 1 < 0 ,出险后赔偿金由保险公司赔付,单位无额外专项开支.根据该单位总支出的差异给出选择合适方案的建议.
15.(2022·全国·高三专题练习)小 SKIPIF 1 < 0 和小 SKIPIF 1 < 0 两个同学进行摸球游戏,甲、乙两个盒子中各装有6个大小和质地相同的球,其中甲盒子中有1个红球,2个黄球,3个蓝球,乙盒子中红球、黄球、蓝球均为2个,小 SKIPIF 1 < 0 同学在甲盒子中取球,小 SKIPIF 1 < 0 同学在乙盒子中取球.
(1)若两个同学各取一个球,求取出的两个球颜色不相同的概率;
(2)若两个同学第一次各取一个球,对比颜色后分别放入原来的盒子;第二次再各取一个球,对比颜色后再分别放入原来的盒子,这样重复取球三次.记球颜色相同的次数为随机变量 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的分布列和数学期望
16.(2022·全国·高三专题练习)某单位组织外出参加公差的12位职工在返回岗位前先让他们进行体检普查某病毒,费用全部由单位承担,假定这12名职工的血液中每个人都不含有病毒(结果呈阴性)的概率都为p,若对每一个人的血样都进行检查,则每一个人都要耗费比较高的一份化验费,经过合理的分析后,提出一份改进方案:先将每一个人的血样各取出一部分,k个人为一组混合后再化验,如果结果都呈阴性,则k个人同时通过,每个人平均化验了 SKIPIF 1 < 0 次,如果呈阳性再将k个人的血样分别化验,以找出血样中含病毒者,这样每个人化验(1+ SKIPIF 1 < 0 )次.
(1)当p= SKIPIF 1 < 0 时且采用改进方案时取k=2,求此时每位职工化验次数X的分布列
(2)当k=3时,求采用改进方案能达到节约化验费目的,且此时满足条件的p的取值范围
17.(2008·全国·(理))已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方案:
方案甲:逐个化验,直到能确定患病动物为止.
方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(1)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;
(2)表示依方案乙所需化验次数,求的期望.
18.(2022·全国·高三专题练习)某牛奶店每天以每盒 SKIPIF 1 < 0 元的价格从牛奶厂购进若干盒鲜牛奶,然后以每盒 SKIPIF 1 < 0 元的价格出售,如果当天卖不完,剩下的牛奶作为垃圾回收处理.
(1)若牛奶店一天购进 SKIPIF 1 < 0 盒鲜牛奶,求当天的利润 SKIPIF 1 < 0 (单位:元)关于当天需求量 SKIPIF 1 < 0 (单位:盒, SKIPIF 1 < 0 )的函数解析式;
(2)牛奶店老板记录了某 SKIPIF 1 < 0 天鲜牛奶的日需求量(单位:盒),整理得下表:
以这 SKIPIF 1 < 0 天记录的各需求量的频率作为各需求量发生的概率.
若牛奶店一天购进 SKIPIF 1 < 0 盒鲜牛奶, SKIPIF 1 < 0 表示当天的利润(单位:元),求 SKIPIF 1 < 0 的分布列及均值;
②若牛奶店计划一天购进 SKIPIF 1 < 0 盒或 SKIPIF 1 < 0 盒鲜牛奶,从统计学角度分析,你认为应购进 SKIPIF 1 < 0 盒还是 SKIPIF 1 < 0 盒?请说明理由.
19.(2022·全国·高三专题练习)今年九月,九龙坡区创建全国文明城区活动正式启动,中央文明办对九龙坡辖区内的市民进行了创建文明城区相关知识(文明城区宣传、建党100周年、社会主义核心价值观、红色基因教育等)网络问卷调查,每一位市民只有一次答题机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,绘制成如下的频率分布直方图
(1)求 SKIPIF 1 < 0 的值;
(2)由频率分布表直方图可以认为,此次问卷调查的得分 SKIPIF 1 < 0 近似服从正态分布 SKIPIF 1 < 0 , SKIPIF 1 < 0 近似为1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求 SKIPIF 1 < 0 ;
(3)在(2)的条件下,文明办为此次参加问卷调查的市民制定如下的奖励方案:
①得分不低于 SKIPIF 1 < 0 的可以获赠2次随机话费,得分低于 SKIPIF 1 < 0 的可以获赠1次随机话费;日需求量
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
频数
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
②每次赠送的随机话费和对应的概率为:
记 SKIPIF 1 < 0 (单位:元)为该市民参加问卷调查获赠的话费,求 SKIPIF 1 < 0 的分布列和数学期望.
附: SKIPIF 1 < 0 .若 SKIPIF 1 < 0 ,则① SKIPIF 1 < 0 ② SKIPIF 1 < 0 ③ SKIPIF 1 < 0
20.(2021·四川·石室中学高三阶段练习(理))一批产品需要进行质量检验,检验方案是:先从这批产品中任取 SKIPIF 1 < 0 件作检验,这 SKIPIF 1 < 0 件产品中优质品的件数记为 SKIPIF 1 < 0 .如果 SKIPIF 1 < 0 ,那么再从这批产品中任取 SKIPIF 1 < 0 件作检验,若都为优质品,则这批产品通过检验;如果 SKIPIF 1 < 0 ,那么再从这批产品中任取 SKIPIF 1 < 0 件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为 SKIPIF 1 < 0 ,即取出的产品是优质品的概率都为 SKIPIF 1 < 0 ,且各件产品是否为优质品相互独立.
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费用为 SKIPIF 1 < 0 元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为 SKIPIF 1 < 0 (单位:元),求 SKIPIF 1 < 0 的分布列及均值(数学期望).
赠送的随机话费(单位:元)
20
40
概率
SKIPIF 1 < 0
SKIPIF 1 < 0
相关学案
这是一份新高考数学一轮复习学案第24讲 平行垂直问题(2份打包,原卷版+解析版),文件包含新高考数学一轮复习学案第24讲平行垂直问题原卷版doc、新高考数学一轮复习学案第24讲平行垂直问题解析版doc等2份学案配套教学资源,其中学案共81页, 欢迎下载使用。
这是一份新高考数学一轮复习学案第11讲 导数综合问题:证明不等式、恒成立问题、零点问题(2份打包,原卷版+解析版),文件包含新高考数学一轮复习学案第11讲导数综合问题证明不等式恒成立问题零点问题原卷版doc、新高考数学一轮复习学案第11讲导数综合问题证明不等式恒成立问题零点问题解析版doc等2份学案配套教学资源,其中学案共31页, 欢迎下载使用。
这是一份新高考数学一轮复习讲义 第40讲 圆与圆的位置关系及圆的综合性问题(2份打包,原卷版+含解析),文件包含新高考数学一轮复习讲义第40讲圆与圆的位置关系及圆的综合性问题原卷版doc、新高考数学一轮复习讲义第40讲圆与圆的位置关系及圆的综合性问题含解析doc等2份学案配套教学资源,其中学案共64页, 欢迎下载使用。