所属成套资源:备战2025年高考数学真题题源解密(新高考卷)
专题09 立体几何初步(3大考向真题解读)-备战2025年高考数学真题题源解密(新高考卷)
展开
这是一份专题09 立体几何初步(3大考向真题解读)-备战2025年高考数学真题题源解密(新高考卷),文件包含专题09立体几何初步--备战2025年高考数学真题题源解密新高考卷原卷版docx、专题09立体几何初步--备战2025年高考数学真题题源解密新高考卷解析版docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。
命题分析
2024年高考新高考Ⅰ卷考查了圆柱、圆锥表面积、体积的综合应用,Ⅱ卷考查了以棱台为背景的线面角的求法,总的来说,基本立体图形的表面积和体积属于常考点,难度一般是较易和适中,掌握基本的公式和提升计算能力比较重要。预计2025年高考还是主要考查基本立体图形的表面积和体积,可以多多关注台体的表面积和体积计算。
试题精讲
一、单选题
1.(2024新高考Ⅰ卷·5)已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为,则圆锥的体积为( )
A.B.C.D.
【答案】B
【分析】设圆柱的底面半径为,根据圆锥和圆柱的侧面积相等可得半径的方程,求出解后可求圆锥的体积.
【详解】设圆柱的底面半径为,则圆锥的母线长为,
而它们的侧面积相等,所以即,
故,故圆锥的体积为.
故选:B.
2.(2024新高考Ⅱ卷·7)已知正三棱台的体积为,,,则与平面ABC所成角的正切值为( )
A.B.1C.2D.3
【答案】B
【分析】解法一:根据台体的体积公式可得三棱台的高,做辅助线,结合正三棱台的结构特征求得,进而根据线面夹角的定义分析求解;解法二:将正三棱台补成正三棱锥,与平面ABC所成角即为与平面ABC所成角,根据比例关系可得,进而可求正三棱锥的高,即可得结果.
【详解】解法一:分别取的中点,则,
可知,
设正三棱台的为,
则,解得,
如图,分别过作底面垂线,垂足为,设,
则,,
可得,
结合等腰梯形可得,
即,解得,
所以与平面ABC所成角的正切值为;
解法二:将正三棱台补成正三棱锥,
则与平面ABC所成角即为与平面ABC所成角,
因为,则,
可知,则,
设正三棱锥的高为,则,解得,
取底面ABC的中心为,则底面ABC,且,
所以与平面ABC所成角的正切值.
故选:B.
一、单选题
1.(2022新高考Ⅰ卷·4)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()( )
A.B.C.D.
【答案】C
【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.
【详解】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积.
棱台上底面积,下底面积,
∴
.
故选:C.
2.(2022新高考Ⅰ卷·8)已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是( )
A.B.C.D.
【答案】C
【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.
【详解】∵球的体积为,所以球的半径,
[方法一]:导数法
设正四棱锥的底面边长为,高为,
则,,
所以,
所以正四棱锥的体积,
所以,
当时,,当时,,
所以当时,正四棱锥的体积取最大值,最大值为,
又时,,时,,
所以正四棱锥的体积的最小值为,
所以该正四棱锥体积的取值范围是.
故选:C.
[方法二]:基本不等式法
由方法一故所以当且仅当取到,
当时,得,则
当时,球心在正四棱锥高线上,此时,
,正四棱锥体积,故该正四棱锥体积的取值范围是
3.(2022新高考Ⅱ卷·7)已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为( )
A.B.C.D.
【答案】A
【分析】根据题意可求出正三棱台上下底面所在圆面的半径,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.
【详解】设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,,故或,即或,解得符合题意,所以球的表面积为.
故选:A.
二、多选题
4.(2022新高考Ⅰ卷·9)已知正方体,则( )
A.直线与所成的角为B.直线与所成的角为
C.直线与平面所成的角为D.直线与平面ABCD所成的角为
【答案】ABD
【分析】数形结合,依次对所给选项进行判断即可.
【详解】如图,连接、,因为,所以直线与所成的角即为直线与所成的角,
因为四边形为正方形,则,故直线与所成的角为,A正确;
连接,因为平面,平面,则,
因为,,所以平面,
又平面,所以,故B正确;
连接,设,连接,
因为平面,平面,则,
因为,,所以平面,
所以为直线与平面所成的角,
设正方体棱长为,则,,,
所以,直线与平面所成的角为,故C错误;
因为平面,所以为直线与平面所成的角,易得,故D正确.
故选:ABD
5.(2023新高考Ⅰ卷·12)下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有( )
A.直径为的球体
B.所有棱长均为的四面体
C.底面直径为,高为的圆柱体
D.底面直径为,高为的圆柱体
【答案】ABD
【分析】根据题意结合正方体的性质逐项分析判断.
【详解】对于选项A:因为,即球体的直径小于正方体的棱长,
所以能够被整体放入正方体内,故A正确;
对于选项B:因为正方体的面对角线长为,且,
所以能够被整体放入正方体内,故B正确;
对于选项C:因为正方体的体对角线长为,且,
所以不能够被整体放入正方体内,故C不正确;
对于选项D:因为,可知底面正方形不能包含圆柱的底面圆,
如图,过的中点作,设,
可知,则,
即,解得,
且,即,
故以为轴可能对称放置底面直径为圆柱,
若底面直径为的圆柱与正方体的上下底面均相切,设圆柱的底面圆心,与正方体的下底面的切点为,
可知:,则,
即,解得,
根据对称性可知圆柱的高为,
所以能够被整体放入正方体内,故D正确;故选:ABD.
6.(2022新高考Ⅱ卷·11)如图,四边形为正方形,平面,,记三棱锥,,的体积分别为,则( )
A.B.
C.D.
【答案】CD
【分析】直接由体积公式计算,连接交于点,连接,由计算出,依次判断选项即可.
【详解】
设,因为平面,,则,
,连接交于点,连接,易得,
又平面,平面,则,又,平面,则平面,
又,过作于,易得四边形为矩形,则,
则,,
,则,,,
则,则,,,故A、B错误;C、D正确.
故选:CD.
7.(2023新高考Ⅱ卷·9)已知圆锥的顶点为P,底面圆心为O,AB为底面直径,,,点C在底面圆周上,且二面角为45°,则( ).
A.该圆锥的体积为B.该圆锥的侧面积为
C.D.的面积为
【答案】AC
【分析】根据圆锥的体积、侧面积判断A、B选项的正确性,利用二面角的知识判断C、D选项的正确性.
【详解】依题意,,,所以,
A选项,圆锥的体积为,A选项正确;
B选项,圆锥的侧面积为,B选项错误;
C选项,设是的中点,连接,
则,所以是二面角的平面角,
则,所以,
故,则,C选项正确;
D选项,,所以,D选项错误.故选:AC.
三、填空题
8.(2023新高考Ⅰ卷·14)在正四棱台中,,则该棱台的体积为 .
【答案】
【分析】结合图像,依次求得,从而利用棱台的体积公式即可得解.
【详解】如图,过作,垂足为,易知为四棱台的高,
因为,
则,
故,则,
所以所求体积为.故答案为:.
9.(2023新高考Ⅱ卷·14)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为 .
【答案】
【分析】方法一:割补法,根据正四棱锥的几何性质以及棱锥体积公式求得正确答案;方法二:根据台体的体积公式直接运算求解.
【详解】方法一:由于,而截去的正四棱锥的高为,所以原正四棱锥的高为,
所以正四棱锥的体积为,截去的正四棱锥的体积为,
所以棱台的体积为.
方法二:棱台的体积为.故答案为:.
一、棱柱、棱锥、棱台
1、棱柱:两个面互相平面,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱.
(1)斜棱柱:侧棱不垂直于底面的棱柱;
(2)直棱柱:侧棱垂直于底面的棱柱;
(3)正棱柱:底面是正多边形的直棱柱;
(4)平行六面体:底面是平行四边形的棱柱;
(5)直平行六面体:侧棱垂直于底面的平行六面体;
(6)长方体:底面是矩形的直平行六面体;
(7)正方体:棱长都相等的长方体.
2、棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.
(1)正棱锥:底面是正多边形,且顶点在底面的射影是底面的中心;
(2)正四面体:所有棱长都相等的三棱锥.
3、棱台:用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台,由正棱锥截得的棱台叫做正棱台.
简单凸多面体的分类及其之间的关系如图所示.
二、圆柱、圆锥、圆台、球、组合体
1、圆柱:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的几何体叫做圆柱.
2、圆柱:以直角三角形的一条直角边所在的直线为旋转轴,将其旋转一周形成的面所围成的几何体叫做圆锥.
3、圆台:用平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台.
4、球:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称为球(球面距离:经过两点的大圆在这两点间的劣弧长度).
5、由柱体、锥体、台体、球等几何体组成的复杂的几何体叫做组合体.
三、表面积与体积计算公式
1、表面积公式
2、体积公式
四、空间几何体的直观图
1、斜二测画法
斜二测画法的主要步骤如下:
(1)建立直角坐标系.在已知水平放置的平面图形中取互相垂直的,,建立直角坐标系.
(2)画出斜坐标系.在画直观图的纸上(平面上)画出对应图形.在已知图形平行于轴的线段,在直观图中画成平行于,,使(或),它们确定的平面表示水平平面.
(3)画出对应图形.在已知图形平行于轴的线段,在直观图中画成平行于轴的线段,且长度保持不变;在已知图形平行于轴的线段,在直观图中画成平行于轴,且长度变为原来的一般.可简化为“横不变,纵减半”.
(4)擦去辅助线.图画好后,要擦去轴、轴及为画图添加的辅助线(虚线).被挡住的棱画虚线.
注:直观图和平面图形的面积比为.
五、四个基本事实
基本事实1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
注意:(1)此公理是判定直线在平面内的依据;(2)此公理是判定点在面内的方法
基本事实2:过不在一条直线上的三点,有且只有一个平面.
注意:(1)此公理是确定一个平面的依据;(2)此公理是判定若干点共面的依据
推论①:经过一条直线和这条直线外一点,有且只有一个平面;
注意:(1)此推论是判定若干条直线共面的依据
(2)此推论是判定若干平面重合的依据
(3)此推论是判定几何图形是平面图形的依据
推论②:经过两条相交直线,有且只有一个平面;
推论③:经过两条平行直线,有且只有一个平面;
基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
注意:(1)此公理是判定两个平面相交的依据
(2)此公理是判定若干点在两个相交平面的交线上的依据(比如证明三点共线、三线共点)
(3)此推论是判定几何图形是平面图形的依据
基本事实4:平行于同一条直线的两条直线互相平行.
六、直线与直线的位置关系
七、直线与平面的位置关系
八、平面与平面的位置关系
九、等角定理
1、定义:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
十、直线和平面平行
1、定义
直线与平面没有公共点,则称此直线与平面平行,记作∥
2、判定方法(文字语言、图形语言、符号语言)
3、性质定理(文字语言、图形语言、符号语言)
十一、两个平面平行
1、定义
没有公共点的两个平面叫作平行平面,用符号表示为:对于平面和,若,则∥
2、判定方法(文字语言、图形语言、符号语言)
3、性质定理(文字语言、图形语言、符号语言)
十二、直线与平面垂直
1、直线与平面垂直的定义
如果一条直线和这个平面内的任意一条直线都垂直,那称这条直线和这个平面相互垂直.
2、判定定理(文字语言、图形语言、符号语言)
3、性质定理(文字语言、图形语言、符号语言)
十三、平面与平面垂直
1、平面与平面垂直的定义
如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直.(如图所示,若,且,则)
一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.
2、判定定理(文字语言、图形语言、符号语言)
知识点6:性质定理(文字语言、图形语言、符号语言)
十四、直线与平面所成的角
1、定义
①斜线和斜足:如图,一条直线l与一个平面相交,但不与这个平面垂直,这条直线叫做这个平面的
斜线,斜线和平面的交点A叫做斜足.
②斜线在平面上的射影:如图,过斜线上斜足以外的一点P向平面引垂线PO,过垂足O和斜足A的
直线AO叫做斜线在这个平面上的射影.
③斜线与平面所成的角:平面的一条斜线和它在平面上的射影所成的角,叫做这条直线和这个平面所
成的角.
2、直线与平面所成的角的范围
①一条直线和平面平行,或在平面内,我们说它们所成的角是.
②一条直线垂直于平面,我们说它们所成的角是.
③与平面相交且不垂直于此平面的直线和此平面所成的角的范围是
相关试卷
这是一份专题02 复数(4大考向真题解读)-备战2025年高考数学真题题源解密(新高考卷),文件包含专题02复数-2024年高考数学真题题源解密新高考卷原卷版docx、专题02复数-2024年高考数学真题题源解密新高考卷解析版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
这是一份专题13 数列(4大考向真题解读)-备战2025年高考数学真题题源解密(新高考卷),文件包含专题13数列4大考向真题解读--备战2025年高考数学真题题源解密新高考卷原卷版docx、专题13数列4大考向真题解读--备战2025年高考数学真题题源解密新高考卷解析版docx等2份试卷配套教学资源,其中试卷共54页, 欢迎下载使用。
这是一份专题11 概率(4大考向真题解读)-备战2025年高考数学真题题源解密(新高考卷),文件包含专题11概率4大考向真题解读--备战2025年高考数学真题题源解密新高考卷原卷版docx、专题11概率4大考向真题解读--备战2025年高考数学真题题源解密新高考卷解析版docx等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。