所属成套资源:新高考数学一轮复习课件 (含详解)
新高考数学一轮复习课件 第6章 §6.2 等差数列(含详解)
展开
这是一份新高考数学一轮复习课件 第6章 §6.2 等差数列(含详解),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,同一个常数,n∈N,a+b,a1+n-1d,n-md,①②⇒③,②③⇒①等内容,欢迎下载使用。
1.理解等差数列的概念.2.掌握等差数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数、二次函数的关系.
1.等差数列的有关概念(1)等差数列的定义一般地,如果一个数列从第 项起,每一项与它的前一项的差都等于____ ,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母 表示,定义表达式为_______________________ .(2)等差中项由三个数a,A,b组成等差数列,则A叫做a与b的等差中项,且有2A= .
an-an-1=d(常数)(n≥2,
2.等差数列的有关公式(1)通项公式:an= .
(2)前n项和公式:Sn= 或Sn= .
3.等差数列的常用性质(1)通项公式的推广:an=am+ (n,m∈N*).(2)若{an}为等差数列,且k+l=m+n(k,l,m,n∈N*),则 .(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N*)是公差为 的等差数列.(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.(5)S2n-1=(2n-1)an.
ak+al=am+an
1.已知数列{an}的通项公式是an=pn+q(其中p,q为常数),则数列{an}一定是等差数列,且公差为p.2.在等差数列{an}中,a1>0,d<0,则Sn存在最大值;若a1<0,d>0,则Sn存在最小值.3.等差数列{an}的单调性:当d>0时,{an}是递增数列;当d<0时,{an}是递减数列;当d=0时,{an}是常数列.4.数列{an}是等差数列⇔Sn=An2+Bn(A,B为常数).这里公差d=2A.
判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{an}为等差数列的充要条件是对任意n∈N*,都有2an+1=an+an+2.( )(3)在等差数列{an}中,若am+an=ap+aq,则m+n=p+q.( )(4)若无穷等差数列{an}的公差d>0,则其前n项和Sn不存在最大值.( )
1.在等差数列{an}中,已知a5=11,a8=5,则a10等于A.-2 B.-1 C.1 D.2
∴an=-2n+21.∴a10=-2×10+21=1.
2.设等差数列{an}的前n项和为Sn,若S4=8,S8=20,则a9+a10+a11+a12等于A.12 B.8 C.20 D.16
等差数列{an}中,S4,S8-S4,S12-S8仍为等差数列,即8,20-8,a9+a10+a11+a12为等差数列,所以a9+a10+a11+a12=16.
3.设等差数列{an}的前n项和为Sn.若a1=10,S4=28,则Sn的最大值为___.
由a1=10,S4=4a1+6d=28,解得d=-2,
当n=5或6时,Sn最大,最大值为30.
例1 (1)(2023·开封模拟)已知公差为1的等差数列{an}中, =a3a6,若该数列的前n项和Sn=0,则n等于A.10 B.11 C.12 D.13
解得a1=-6,n=13.
(2)(2020·全国Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)A.3 699块 B.3 474块C.3 402块 D.3 339块
设每一层有n环,由题意可知从内到外每环之间构成d=9,a1=9的等差数列.由等差数列的性质知Sn,S2n-Sn,S3n-S2n成等差数列,且(S3n-S2n)-(S2n-Sn)=n2d,则9n2=729,得n=9,
(1)等差数列的通项公式及前n项和公式共涉及五个量a1,n,d,an,Sn,知道其中三个就能求出另外两个(简称“知三求二”).(2)确定等差数列的关键是求出两个最基本的量,即首项a1和公差d.
跟踪训练1 (1)《周髀算经》有这样一个问题:从冬至日起,依次为小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影长之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,问芒种日影长为(一丈=十尺=一百寸)A.一尺五寸 B.二尺五寸C.三尺五寸 D.四尺五寸
由题意知,从冬至日起,依次为小寒、大寒等十二个节气日影长构成一个等差数列{an},设公差为d,∵冬至、立春、春分日影长之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,
∴芒种日影长为a12=a1+11d=135-11×10=25(寸)=2尺5寸.
所以3=1+2d,解得d=1.
例2 (2021·全国甲卷)已知数列{an}的各项均为正数,记Sn为{an}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{an}是等差数列;②数列{ }是等差数列;③a2=3a1.注:若选择不同的组合分别解答,则按第一个解答计分.
①③⇒②.已知{an}是等差数列,a2=3a1.设数列{an}的公差为d,则a2=3a1=a1+d,得d=2a1,
因为数列{an}的各项均为正数,
设数列{an}的公差为d,
所以S1=a1,S2=a1+a2=4a1.
所以Sn=n2d2,所以an=Sn-Sn-1=n2d2-(n-1)2d2=2d2n-d2(n≥2),是关于n的一次函数,且a1=d2满足上式,所以数列{an}是等差数列.
判断数列{an}是等差数列的常用方法(1)定义法.(2)等差中项法.(3)通项公式法.(4)前n项和公式法.
跟踪训练2 已知数列{an}的各项都是正数,n∈N*.(1)若{an}是等差数列,公差为d,且bn是an和an+1的等比中项,设cn= - ,n∈N*,求证:数列{cn}是等差数列;
因此cn+1-cn=2d(an+2-an+1)=2d2(常数),∴{cn}是等差数列.
∵an+an-1>0,∴an-an-1=1,∴数列{an}是首项为1,公差为1的等差数列,可得an=n.
例3 (1)已知在等差数列{an}中,若a8=8且lg2( )=22,则S13等于A.40 B.65 C.80 D.40+lg25
命题点1 等差数列项的性质
(2)已知数列{an},{bn}都是等差数列,且a1=2,b1=-3,a7-b7=17,则a2 024-b2 024的值为________.
令cn=an-bn,因为{an},{bn}都是等差数列,所以{cn}也是等差数列.设数列{cn}的公差为d,由已知,得c1=a1-b1=5,c7=17,则5+6d=17,解得d=2.故a2 024-b2 024=c2 024=5+2 023×2=4 051.
等差数列项的性质的关注点(1)在等差数列题目中,只要出现项的和问题,一般先考虑应用项的性质.
跟踪训练3 (1)若等差数列{an}的前15项和S15=30,则2a5-a6-a10+a14等于A.2 B.3 C.4 D.5
∴a1+a15=4,∴2a8=4,∴a8=2.∴2a5-a6-a10+a14=a4+a6-a6-a10+a14=a4-a10+a14=a10+a8-a10=a8=2.
所以a6=0,a3+a9=2a6=0,因为a5≠0,a6=0,
命题点2 等差数列前n项和的性质
由题意可知b3+b13=b5+b11=b1+b15=2b8,
(2)已知等差数列{an}共有(2n+1)项,其中奇数项之和为290,偶数项之和为261,则an+1的值为A.30 B.29 C.28 D.27
∴(n+1)an+1=290.
∴an+1=290-261=29.
等差数列前n项和的常用的性质是:在等差数列{an}中,数列Sm,S2m-Sm,S3m-S2m,…也是等差数列,且有S2n=n(a1+a2n)=…=n(an+an+1);S2n-1=(2n-1)an.
跟踪训练4 (1)设等差数列{an}的前n项和为Sn,若S4=20,S5=30,am=40,则m等于A.6 B.10 C.20 D.40
由S4=20,S5=30,得a5=S5-S4=10,由等差数列的性质,得S5=30=5a3,故a3=6,而a5-a3=10-6=4=2d,故d=2,am=40=a5+2(m-5),解得m=20.
A.2 023 B.-2 023C.4 046 D.-4 046
∴S2 023=2 023×2=4 046,故选C.
1.首项为-21的等差数列从第8项起为正数,则公差d的取值范围是
an=-21+(n-1)d,因为从第8项起为正数,所以a7=-21+6d≤0,a8=-21+7d>0,
2.设Sn是等差数列{an}的前n项和,若S50-S47=12,则S97等于A.198 D.2 023
∵S50-S47=a48+a49+a50=12,∴a49=4,
3.已知等差数列{an}的项数为奇数,其中所有奇数项之和为319,所有偶数项之和为290,则该数列的中间项为A.28 D.31
设等差数列{an}共有2n+1项,则S奇=a1+a3+a5+…+a2n+1,S偶=a2+a4+a6+…+a2n,该数列的中间项为an+1,又S奇-S偶=a1+(a3-a2)+(a5-a4)+…+(a2n+1-a2n)=a1+d+d+…+d=a1+nd=an+1,所以an+1=S奇-S偶=319-290=29.
4.天干地支纪年法,源于中国.中国自古便有十天干与十二地支.十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸,十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如说第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,……,依此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”“乙亥”,之后地支回到“子”重新开始,即“丙子”,……,依此类推.1911年中国爆发推翻清朝专制帝制、建立共和政体的全国性革命,这一年是辛亥年,史称“辛亥革命”.1949年新中国成立,请推算新中国成立的年份为A.己丑年 B.己酉年 C.丙寅年 D.甲寅年
根据题意可得,天干是以10为公差的等差数列,地支是以12为公差的等差数列,从1911年到1949年经过38年,且1911年为“辛亥”年,以1911年的天干和地支分别为首项,则38=3×10+8,则1949年的天干为己,38=12×3+2,则1949年的地支为丑,所以1949年为己丑年.
5.设Sn为等差数列{an}的前n项和,若3a5=7a11,且a1>0.则使Sn0,则3(a1+4d)=7(a1+10d),
若Sn0,又由n∈N*,则n>30,故使Sn5时,anS7>S5,则满足SnSn+1S7>S5,得S7=S6+a7S5,所以a70,
所以S12S13
相关课件
这是一份新高考数学一轮复习讲练测课件第6章§6.2等差数列 (含解析),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,同一个常数,n∈N,a+b,a1+n-1d,n-md,①②⇒③,②③⇒①等内容,欢迎下载使用。
这是一份新高考数学一轮复习课件 第6章 §6.2 等差数列,共60页。PPT课件主要包含了§62等差数列,落实主干知识,探究核心题型,课时精练等内容,欢迎下载使用。
这是一份(新高考)高考数学一轮考点复习6.2《等差数列及其前n项和》课件 (含解析)