第52讲 双曲线--2025高考一轮单元综合复习与测试卷
展开1.双曲线的定义
把平面内与两个定点F1,F2的距离的差的绝对值等于非零常数(小于|F1F2|)的点的轨迹叫做双曲线.两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.
2.双曲线的标准方程和简单几何性质
常用结论
(1)双曲线的焦点到其渐近线的距离为b.
(2)若P是双曲线右支上一点,F1,F2分别为双曲线的左、右焦点,则|PF1|min=a+c,|PF2|min=c-a.
(3)同支的焦点弦中最短的为通径(过焦点且垂直于实轴的弦),其长为eq \f(2b2,a).
(4)若P是双曲线上不同于实轴两端点的任意一点,F1,F2分别为双曲线的左、右焦点,则=eq \f(b2,tan \f(θ,2)),其中θ为∠F1PF2.
(5)与双曲线eq \f(x2,a2)-eq \f(y2,b2)=1(a>0,b>0)有共同渐近线的方程可表示为eq \f(x2,a2)-eq \f(y2,b2)=t(t≠0).
考点1 双曲线的定义及应用
[名师点睛]
在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF1|-|PF2||=2a,运用平方的方法,建立与|PF1|·|PF2|的联系.
[典例]
1.(2022·滨州质检)eq \r(x2+(y-3)2)-eq \r(x2+(y+3)2)=4表示的曲线方程为( )
A.eq \f(x2,4)-eq \f(y2,5)=1(x≤-2) B.eq \f(x2,4)-eq \f(y2,5)=1(x≥2)
C.eq \f(y2,4)-eq \f(x2,5)=1(y≤-2) D.eq \f(y2,4)-eq \f(x2,5)=1(y≥2)
2.已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,∠F1PF2=60°,则△F1PF2的面积为________.
[举一反三]
1.(2022·扬州、盐城、南通联考)已知双曲线C的离心率为eq \r(3),F1,F2是C的两个焦点,P为C上一点,|PF1|=3|PF2|,若△PF1F2的面积为eq \r(2),则双曲线C的实轴长为( )
A.1 B.2 C.3 D.6
2.已知F是双曲线eq \f(x2,4)-eq \f(y2,12)=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为________.
3.(2022·广州模拟)过双曲线x2-eq \f(y2,4)=1的左焦点F1作一条直线l交双曲线左支于P,Q两点,若|PQ|=10,F2是双曲线的右焦点,则△PF2Q的周长是________.
考点2 双曲线的标准方程
[名师点睛]
求双曲线的标准方程的方法
(1)定义法:由题目条件判断出动点轨迹是双曲线,确定2a,2b或2c,从而求出a2,b2.
(2)待定系数法:“先定型,再定量”,如果焦点位置不好确定,可将双曲线方程设为eq \f(x2,m2)-eq \f(y2,n2)=λ(λ≠0),再根据条件求λ的值.
[典例]
1.(2021·北京)双曲线C:eq \f(x2,a2)-eq \f(y2,b2)=1过点(eq \r(2),eq \r(3)),且离心率为2,则该双曲线的标准方程为( )
A.x2-eq \f(y2,3)=1 B.eq \f(x2,3)-y2=1
C.x2-eq \f(\r(3)y2,3)=1 D.eq \f(\r(3)x2,3)-y2=1
2.若双曲线经过点(3,eq \r(2)),且渐近线方程是y=±eq \f(1,3)x,则双曲线的标准方程是________.
[举一反三]
1.(2022·佛山调研)已知F1,F2分别为双曲线eq \f(x2,a2)-eq \f(y2,b2)=1(a>0,b>0)的左、右焦点,P为双曲线上一点,PF2与x轴垂直,∠PF1F2=30°,且虚轴长为2eq \r(2),则双曲线的标准方程为( )
A.eq \f(x2,4)-eq \f(y2,2)=1 B.eq \f(x2,3)-eq \f(y2,2)=1
C.eq \f(x2,4)-eq \f(y2,8)=1 D.x2-eq \f(y2,2)=1
2.与椭圆eq \f(x2,4)+y2=1共焦点且过点P(2,1)的双曲线标准方程是________.
3.已知双曲线C:eq \f(x2,a2)-eq \f(y2,b2)=1(a>0,b>0)的渐近线方程为y=±eq \f(3,4)x,且其右焦点为(5,0),则双曲线C的标准方程为________.
考点3 双曲线的几何性质
[名师点睛]
1.求双曲线离心率或其取值范围的方法:
(1)直接求出a,c的值,利用离心率公式直接求解.
(2)列出含有a,b,c的齐次方程(或不等式),借助于b2=a2-c2消去b,转化为含有e的方程(或不等式)求解.
2.双曲线eq \f(x2,a2)-eq \f(y2,b2)=1(a>0,b>0)的渐近线可由eq \f(x2,a2)-eq \f(y2,b2)=0即得两渐近线方程eq \f(x,a)±eq \f(y,b)=0.
[典例]
1.(2022·杭州模拟)设F1,F2是双曲线C:eq \f(x2,a2)-eq \f(y2,b2)=1(a>0,b>0)的左、右焦点,P是双曲线C右支上一点,若|PF1|+|PF2|=4a,且∠F1PF2=60°,则双曲线C的渐近线方程是( )
A.eq \r(3)x±y=0 B.2x±eq \r(7)y=0
C.eq \r(3)x±2y=0 D.2x±eq \r(3)y=0
2.(2021·全国甲卷)已知F1,F2是双曲线C的两个焦点,P为C上一点,且∠F1PF2=60°,|PF1|=3|PF2|,则C的离心率为( )
A.eq \f(\r(7),2) B.eq \f(\r(13),2) C.eq \r(7) D.eq \r(13)
3.(2022·滨州模拟)已知F1,F2分别是双曲线C:eq \f(x2,a2)-eq \f(y2,b2)=1(a>0,b>0)的左、右焦点,点P是双曲线C上在第一象限内的一点,若sin∠PF2F1=3sin∠PF1F2,则双曲线C的离心率的取值范围为( )
A.(1,2) B.(1,3)
C.(3,+∞) D.(2,3)
[举一反三]
1.(2022·济南模拟)已知双曲线eq \f(x2,m+1)-eq \f(y2,m)=1(m>0)的渐近线方程为x±eq \r(3)y=0,则m等于( )
A.eq \f(1,2) B.eq \r(3)-1
C.eq \f(\r(3)+1,2) D.2
2.(2022·石家庄模拟)已知点F是双曲线eq \f(x2,a2)-eq \f(y2,b2)=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过F且垂直于x轴的直线与双曲线交于A,B两点,若△ABE是锐角三角形,则该双曲线的离心率e的取值范围是( )
A.(1,+∞) B.(1,2)
C.(1,1+eq \r(2)) D.(2,1+eq \r(2))
3.(2020·全国Ⅱ卷)设O为坐标原点,直线x=a与双曲线C:eq \f(x2,a2)-eq \f(y2,b2)=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为( )
A.4 B.8 C.16 D.32
4.(多选)已知双曲线C:eq \f(x2,a2)-eq \f(y2,b2)=1(a>0,b>0)的离心率为eq \f(2\r(3),3),右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点,则( )
A.渐近线方程为y=±eq \r(3)x
B.渐近线方程为y=±eq \f(\r(3),3)x
C.∠MAN=60°
D.∠MAN=120°
5.(2022·湖北七市(州)联考)已知双曲线eq \f(x2,a2)-eq \f(y2,b2)=1(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),若双曲线存在一点P使eq \f(sin∠PF1F2,sin∠PF2F1)=eq \f(a,c),则该双曲线的离心率的取值范围是________.
标准方程
eq \f(x2,a2)-eq \f(y2,b2)=1(a>0,b>0)
eq \f(y2,a2)-eq \f(x2,b2)=1(a>0,b>0)
图形
性质
焦点
F1(-c,0),F2(c,0)
F1(0,-c),F2(0,c)
焦距
|F1F2|=2c
范围
x≤-a或x≥a,y∈R
y≤-a或y≥a,x∈R
对称性
对称轴:坐标轴;对称中心:原点
顶点
A1(-a,0),A2(a,0)
A1(0,-a),A2(0,a)
轴
实轴:线段A1A2,长:2a;虚轴:线段B1B2,长:2b,实半轴长:a,虚半轴长:b
离心率
e=eq \f(c,a)∈(1,+∞)
渐近线
y=±eq \f(b,a)x
y=±eq \f(a,b)x
a,b,c的关系
c2=a2+b2 (c>a>0,c>b>0)
第48讲 圆的方程--2025高考一轮单元综合复习与测试卷: 这是一份第48讲 圆的方程--2025高考一轮单元综合复习与测试卷,文件包含第48讲圆的方程原卷版docx、第48讲圆的方程解析版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
第53讲 抛物线--2025高考一轮单元综合复习与测试卷: 这是一份第53讲 抛物线--2025高考一轮单元综合复习与测试卷,文件包含第53讲抛物线原卷版docx、第53讲抛物线解析版docx等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。
第37讲 数列求和--2025高考一轮单元综合复习与测试卷: 这是一份第37讲 数列求和--2025高考一轮单元综合复习与测试卷,文件包含第37讲数列求和原卷版docx、第37讲数列求和解析版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。