所属成套资源:2025年高考数学二轮复习课时精练学案必刷题(2份打包,原卷版+含解析)
2025年高考数学二轮复习课时精练学案必刷小题13 立体几何(2份打包,原卷版+含解析)
展开这是一份2025年高考数学二轮复习课时精练学案必刷小题13 立体几何(2份打包,原卷版+含解析),文件包含2025年高考数学二轮复习课时精练学案必刷小题13立体几何原卷版doc、2025年高考数学二轮复习课时精练学案必刷小题13立体几何含解析doc等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。
1.如图,△O′A′B′是△OAB的直观图,则△OAB是( )
A.正三角形 B.直角三角形 C.钝角三角形 D.以上都有可能
答案 C
解析 因为∠x′O′y′=45°,则线段A′B′与y′轴必相交,令交点为C′,如图(1)所示,
在平面直角坐标系Oxy中,点A在x轴上,可得OA=O′A′,点C在y轴上,可得OC=2O′C′,
如图(2)所示,因此点B必在线段AC的延长线上,所以∠BOA>∠COA=90°,所以△OAB是钝角三角形.
2.下列四个命题中,正确的是( )
A.各侧面都是全等四边形的棱柱一定是正棱柱
B.对角面是全等矩形的六面体一定是长方体
C.有两侧面垂直于底面的棱柱一定是直棱柱
D.长方体一定是直四棱柱
答案 D
解析 对于A,底面是菱形的直平行六面体,满足条件但不是正棱柱;对于B,底面是等腰梯形的直棱柱,满足条件但不是长方体;C显然错误;长方体一定是直四棱柱,D正确.
3.从平面外一点P引与平面相交的直线,使P点与交点的距离等于1,则满足条件的直线可能有( )
A.0条或1条 B.0条或无数条
C.1条或2条 D.0条或1条或无数条
答案 D
解析 当点P到平面的距离大于1时,没有满足条件的直线;当点P到平面的距离等于1时,满足条件的直线只有1条;当点P到平面的距离小于1时,满足条件的直线有无数条.
4.圆柱形玻璃杯中盛有高度为10 cm的水,若放入一个玻璃球(球的半径与圆柱形玻璃杯内壁的底面半径相同)后,水恰好淹没了玻璃球,则玻璃球的半径为( )
A.eq \f(20,3) cm B.15 cm
C.10eq \r(3) cm D.20 cm
答案 B
解析 根据题意,玻璃球的体积等于放入玻璃球后水的体积减去原来水的体积.设玻璃球的半径为r,即圆柱形玻璃杯内壁的底面半径为r,则玻璃球的体积为eq \f(4,3)πr3,圆柱的底面面积为πr2,若放入一个玻璃球后,水恰好淹没玻璃球,则此时水面的高度为2r,所以eq \f(4,3)πr3=πr2(2r-10),解得r=15(cm).
5.设m,n为两条直线,α,β为两个平面,则α⊥β的充分条件是( )
A.m∥α,n∥β,m⊥n
B.m⊥α,n∥β,m⊥n
C.m⊥α,n⊥β,m⊥n
D.m⊂α,n⊂β,m⊥n
答案 C
解析 对于A,如图(1),α∩β=l,m⊥l,n∥l,则满足m∥α,n∥β,m⊥n,平面α与β不一定垂直,故A错误;
对于B,如图(2),α∩β=l,n∥l,m⊥α,则满足n∥β,m⊥n,平面α与β不一定垂直,故B错误;
对于C,如图(3),m⊥α,n⊥β,m⊥n,在直线m,n上取两个向量eq \(BA,\s\up6(→)),eq \(DC,\s\up6(→)),则eq \(BA,\s\up6(→)),eq \(DC,\s\up6(→))分别为平面α,β的法向量,且eq \(BA,\s\up6(→))⊥eq \(DC,\s\up6(→)),则α⊥β,故C正确;
对于D,如图(4),α∩β=l,m⊂α,n⊂β,m⊥l,n∥l,则m⊥n,平面α与β不一定垂直,故D错误.
6.某同学画“切面圆柱体”(用与圆柱底面不平行的平面切圆柱,底面与切面之间的部分叫做切面圆柱体),发现切面与圆柱侧面的交线是一个椭圆(如图所示).若该同学所画的椭圆的离心率为eq \f(1,2),则“切面”所在平面与底面所成的角为( )
A.eq \f(π,12) B.eq \f(π,6) C.eq \f(π,4) D.eq \f(π,3)
答案 B
解析 设椭圆与圆柱的轴截面如图所示,作DE⊥BC交BC于点E,
则∠CDE为“切面”所在平面与底面所成的角,设为θ.设底面圆的直径为2r,则CD为椭圆的长轴2a,短轴为2b=DE=2r,则椭圆的长轴长2a=CD=eq \f(2r,cs θ),即a=eq \f(r,cs θ),所以椭圆的离心率为
e=eq \f(1,2)=eq \f(c,a)=eq \r(1-\f(b2,a2))=eq \r(1-\f(r2,\f(r2,cs2θ)))=sin θ,所以θ=eq \f(π,6).
7.如图,圆台内有一个球,该球与圆台的侧面和底面均相切.已知圆台的下底面圆心为O1,半径为r1,圆台的上底面圆心为O2,半径为r2(r1>r2),球的球心为O,半径为R,记圆台的表面积为S1,球的表面积为S2,则eq \f(S1,S2)的可能取值为( )
A.eq \f(π,2) B.eq \f(3,2) C.eq \f(π,3) D.eq \f(4,3)
答案 A
解析 如图,作出圆台的轴截面,作DF⊥BC,垂足为F,
由题意知圆O与梯形ABCD相切,则DC=DE+CE=O2D+O1C=r2+r1,
又DC=eq \r(DF2+FC2)=eq \r(4R2+r1-r22),故eq \r(4R2+r1-r22)=r1+r2,化简可得R2=r1r2,
则eq \f(S1,S2)=eq \f(πr\\al(2,1)+r\\al(2,2)+πr1+r2r1+r2,4πR2)=eq \f(r\\al(2,1)+r\\al(2,2)+r1r2,2r1r2)=eq \f(r\\al(2,1)+r\\al(2,2),2r1r2)+eq \f(1,2)>eq \f(2r1r2,2r1r2)+eq \f(1,2)=eq \f(3,2)(r1>r2,故取不到等号),
由于eq \f(3,2),eq \f(π,3),eq \f(4,3)都不大于eq \f(3,2),故eq \f(S1,S2)的可能取值为eq \f(π,2).
8.在通用技术教室里有一个三棱锥木块如图所示,VA,VB,VC两两垂直,VA=VB=VC=1(单位:dm),小明同学计划通过侧面VAC内任意一点P将木块锯开,使截面平行于直线VB和AC,则该截面面积(单位:dm2)的最大值是( )
A.eq \f(1,4) dm2 B.eq \f(\r(2),4) dm2
C.eq \f(\r(3),4) dm2 D.eq \f(3,4) dm2
答案 B
解析 根据题意,在平面VAC内,过点P作EF∥AC分别交VA,VC于点F,E,在平面VBC内,过点E作EQ∥VB交BC于点Q,在平面VAB内,过点F作FD∥VB交AB于点D,连接DQ,如图所示,
因为EF∥AC,所以△VEF∽△VCA,设其相似比为k,则eq \f(VF,VA)=eq \f(VE,VC)=eq \f(EF,AC)=k,0
因为FD∥ VB,所以△AFD∽△AVB,即eq \f(AF,VA)=eq \f(AD,BA)=eq \f(FD,VB),因为eq \f(AF,VA)=eq \f(VA-VF,VA)=1-k,
所以eq \f(FD,VB)=eq \f(AF,VA)=1-k,即FD=1-k,同理△CEQ∽△CVB,即eq \f(CE,VC)=eq \f(CQ,BC)=eq \f(EQ,VB)=1-k,
即EQ=1-k,所以FD∥EQ,且FD=EQ,所以四边形FEQD为平行四边形,
因为VB⊥VC,VB⊥VA,VA∩VC=V,VA⊂平面VAC,VC⊂平面VAC,
所以VB⊥平面VAC,因为FD∥VB,所以FD⊥平面VAC,因为EF⊂平面VAC,所以FD⊥EF,
所以四边形FEQD是矩形,即S矩形FEQD=FD·EF=(1-k)·eq \r(2)k=-eq \r(2)eq \b\lc\(\rc\)(\a\vs4\al\c1(k-\f(1,2)))2+eq \f(\r(2),4),
所以当k=eq \f(1,2)时,S矩形FEQD有最大值eq \f(\r(2),4).故该截面面积的最大值是eq \f(\r(2),4) dm2.
二、多项选择题
9.某球形巧克力设计了一种圆柱形包装盒,每盒可装7个球形巧克力,每盒只装一层,相邻的球形巧克力相切,与包装盒接触的6个球形巧克力与圆柱形包装盒侧面及上下底面都相切,如图是平行于底面且过圆柱母线中点的截面,设包装盒的底面半径为R,球形巧克力的半径为r,每个球形巧克力的体积为V1,包装盒的体积为V2,则( )
A.R=3r B.R=6r
C.V2=9V1 D.2V2=27V1
答案 AD
解析 由截面图可以看出,圆柱的底面直径是球形巧克力直径的3倍,即可得R=3r,
圆柱的高等于球形巧克力的直径,即h=2r,V1=eq \f(4πr3,3),V2=πR2h=18πr3,则有2V2=27V1.
10.正六棱台的上、下底面边长分别是2 cm和6 cm,侧棱长是5 cm,则下列说法正确的是( )
A.该正六棱台的上底面积是6eq \r(3) cm2
B.该正六棱台的侧面积是15 cm2
C.该正六棱台的表面积是(60eq \r(3)+24eq \r(21))cm2
D.该正六棱台的高是3 cm
答案 ACD
解析 如图,在正六棱台ABCDEF-A1B1C1D1E1F1中,
因为A1B1=2 cm,AB=6 cm,AA1=5 cm,
所以侧面的梯形ABB1A1的高即正六棱台斜高为eq \r(52-\b\lc\(\rc\)(\a\vs4\al\c1(\f(6-2,2)))2)=eq \r(21)(cm),
所以梯形ABB1A1的面积为S=eq \f(1,2)×(2+6)×eq \r(21)=4eq \r(21) (cm2),
故正六棱台的侧面积为6S=6×4eq \r(21)=24eq \r(21)(cm2),故B错误;
由图可知该正六棱台的上底面积为6个边长为2的等边三角形组成,
所以该正六棱台的上底面积为S1=6×eq \f(1,2)×2×2×sin 60°=6eq \r(3)(cm2),故A正确;
同理下底面积为S2=6×eq \f(1,2)×6×6×sin 60°=54eq \r(3)(cm2),
所以该正六棱台的表面积是6S+S1+S2=(60eq \r(3)+24eq \r(21))cm2,故C正确;
正六棱台的高为OO1=eq \r(52-6-22)=3(cm),故D正确.
11.如图所示,在正方体ABCD-A1B1C1D1中,E是平面ADD1A1的中心,M,N,F分别是B1C1,CC1,AB的中点,则下列说法正确的是( )
A.MN=eq \f(1,2)EF B.MN≠eq \f(1,2)EF C.MN与EF异面 D.MN与EF平行
答案 BC
解析 设正方体ABCD-A1B1C1D1的棱长为2a,
则MN=eq \r(MC\\al(2,1)+C1N2)=eq \r(\b\lc\(\rc\)(\a\vs4\al\c1(\f(2a,2)))2+\b\lc\(\rc\)(\a\vs4\al\c1(\f(2a,2)))2)=eq \r(2)a,作点E在平面ABCD内的射影点G,连接EG,GF,所以EF=eq \r(EG2+GF2)=eq \r(\b\lc\(\rc\)(\a\vs4\al\c1(\f(2a,2)))2+\r(2)a2)=eq \r(3)a,所以MN≠eq \f(1,2)EF,故选项B正确,A错误;
连接DE,因为E为平面ADD1A1的中心,所以DE=eq \f(1,2)A1D,又因为M,N分别为B1C1,CC1的中点,
所以MN∥B1C,又因为B1C∥A1D,所以MN∥ED,且DE∩EF=E,所以MN与EF异面,故选项C正确,D错误.
12.如图,已知三棱柱ABC-A1B1C1的底面ABC为正三角形,侧棱AA1垂直于底面ABC,D为AC的中点,则下列判断正确的是( )
A.C1D与BB1是异面直线
B.BD⊥A1C1
C.平面BDC1⊥平面ACC1A1
D.A1B1∥平面BDC1
答案 ABC
解析 对于A,在三棱柱ABC-A1B1C1中,BB1∥CC1,CC1⊂平面 ACC1A1,BB1⊄平面ACC1A1,所以BB1∥平面 ACC1A1,又CC1∩C1D=C1,所以 C1D 与 BB1 是异面直线,故A正确;
对于B,因为AA1垂直于底面ABC,BD⊂平面ABC,所以AA1⊥BD,又因为△ABC为正三角形,且D为AC的中点,所以BD⊥AC,又AC∩AA1=A,AC,AA1⊂平面ACC1A1,所以BD⊥平面ACC1A1,又A1C1⊂平面ACC1A1,所以BD⊥A1C1,故B正确;
对于C,因为 BD⊥平面 ACC1A1,BD⊂平面BDC1,所以平面BDC1⊥平面 ACC1A1,故C正确;
对于D,因为 AB∩平面 BDC1=B,所以AB与平面BDC1不平行,又 AB∥A1B1,所以A1B1与平面BDC1不平行,故D错误.
三、填空题
13.在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,且PA=AB,AD=eq \r(3)AB,则tan∠APC=________.
答案 2
解析 ∵PA⊥底面ABCD,AC⊂底面ABCD,∴PA⊥AC,
设AB=1,则PA=1,AD=eq \r(3),AC=eq \r(AD2+CD2)=2,∴tan∠APC=eq \f(AC,PA)=2.
14.如图,已知PA⊥PB,PA⊥PC,∠ABP=∠ACP=60°,PB=PC=eq \r(2)BC,D是BC的中点,则AD与平面PBC所成角的余弦值为______.
答案 eq \f(\r(217),31)
解析 ∵PA⊥PB,PA⊥PC,PB∩PC=P,PB,PC⊂平面PBC,∴PA⊥平面PBC,连接PD,如图所示,
则PD是AD在平面PBC内的射影,∴∠PDA就是AD与平面PBC所成的角.
又∵∠ABP=∠ACP=60°,PB=PC=eq \r(2)BC,D是BC的中点,
∴PD=eq \f(\r(7),2)BC,PA=eq \r(6)BC,∴AD=eq \f(\r(31),2)BC,∴cs∠PDA=eq \f(PD,AD)=eq \f(\r(217),31),
∴AD与平面PBC所成角的余弦值为eq \f(\r(217),31).
15.如图所示,在长方体ABCD-A1B1C1D1中,AB=3,AD=4,AA1=5,点E是棱CC1上的一个动点,若平面BED1交棱AA1于点F,则四棱锥B1-BED1F的体积为________,截面四边形BED1F的周长的最小值为 ________.
答案 20 2eq \r(74)
解析 由题意可得D1F∥BE,则 SKIPIF 1 < 0 = SKIPIF 1 < 0 + SKIPIF 1 < 0 = SKIPIF 1 < 0 + SKIPIF 1 < 0
=eq \f(1,3)×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)BB1·BC·AB+\f(1,2)BB1·AB·D1A1)) =eq \f(1,3)×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)×5×4×3+\f(1,2)×5×3×4))=20.
将长方体展开,如图所示,当点E为BD1与CC1的交点,F为BD1与AA1的交点时,截面四边形BED1F的周长最小,最小值为2BD1=2eq \r(52+3+42)=2eq \r(74).
16.青铜豆最早见于商代晚期,盛行于春秋战国时期,它不仅可以作为盛放食物的铜器,还是一件十分重要的礼器,图①为河南出土的战国青铜器——方豆,豆盘以上是长方体容器和正四棱台的斗形盖.图②是与主体结构相似的几何体,其中AB=4,MN=NF=2,K为BC上一点,且eq \f(CK,BC)=eq \f(1,3),Z为PQ上一点.若DK⊥MZ,则eq \f(QZ,ZP)=________;若几何体EFGH-MNPQ的所有顶点都在同一个球面上,则该球的表面积为________.
答案 eq \f(1,2) 40π
解析 由题意可知,平面ABCD∥平面EFGH∥平面MNPQ,
设平面EMZ交平面ABCD于AJ,因为平面EMZ交平面MNPQ=MZ,所以MZ∥AJ,设DK∩AJ=L,
因为DK⊥MZ,所以DK⊥AJ,因为∠DKC+∠KDC=eq \f(π,2),∠DJL+∠KDC=eq \f(π,2),所以∠DKC=∠DJL,
而∠DCK=∠ADJ=eq \f(π,2),所以△DCK∽△ADJ,所以eq \f(CK,DJ)=eq \f(DC,AD),所以eq \f(CK,DC)=eq \f(DJ,AD),
因为四边形ABCD为正方形,所以CJ∶JD=BK∶KC=2∶1.所以eq \f(QZ,ZP)=eq \f(DJ,JC)=eq \f(1,2),
几何体EFGH-MNPQ为正四棱台,由正四棱台的对称性可知,几何体EFGH-MNPQ的外接球的球心必在平面NFHQ上,设NQ的中点为O1,FH的中点为O2,则球心O在O1O2上,连接OO1,OF,ON,
由题意可知,FH=eq \r(2)AB=4eq \r(2),
NQ=eq \r(2)MN=2eq \r(2),FO2=2eq \r(2),NO1=eq \r(2),过N作NS⊥FH于S,则FS=eq \f(1,2)(FH-NQ)=eq \f(1,2)(4eq \r(2)-2eq \r(2))=eq \r(2),
由勾股定理得NS=eq \r(FN2-FS2)=eq \r(4-2)=eq \r(2),所以O1O2=NS=eq \r(2),设外接球的半径为R,OO2=d,
由R=OF=ON可得eq \r(FO\\al(2,2)+OO\\al(2,2))=eq \r(NO\\al(2,1)+OO\\al(2,1)),即eq \r(8+d2)=eq \r(2+d+\r(2)2),解得d=eq \r(2),
所以R=OF=eq \r(2\r(2)2+\r(2)2)=eq \r(10),所以几何体EFGH-MNPQ外接球的表面积为S=4πR2=40π.
相关试卷
这是一份2025年高考数学二轮复习课时精练学案必刷大题9 解三角形(2份打包,原卷版+含解析),文件包含2025年高考数学二轮复习课时精练学案必刷大题9解三角形原卷版doc、2025年高考数学二轮复习课时精练学案必刷大题9解三角形含解析doc等2份试卷配套教学资源,其中试卷共7页, 欢迎下载使用。
这是一份2025年高考数学二轮复习课时精练学案必刷大题6 导数的综合问题(2份打包,原卷版+含解析),文件包含2025年高考数学二轮复习课时精练学案必刷大题6导数的综合问题原卷版doc、2025年高考数学二轮复习课时精练学案必刷大题6导数的综合问题含解析doc等2份试卷配套教学资源,其中试卷共7页, 欢迎下载使用。
这是一份2025年高考数学二轮复习课时精练学案 必刷小题1 集合、常用逻辑用语、不等式(2份打包,原卷版+含解析),文件包含2025年高考数学二轮复习课时精练学案必刷小题1集合常用逻辑用语不等式原卷版doc、2025年高考数学二轮复习课时精练学案必刷小题1集合常用逻辑用语不等式含解析doc等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。