辽宁省大连市普兰店区2023-2024学年七年级下学期期末数学试题
展开
这是一份辽宁省大连市普兰店区2023-2024学年七年级下学期期末数学试题,共10页。试卷主要包含了本试题卷面满分,下列调查方式,你认为最合适的是,若,则下列式子正确的是,计算的结果是,下列命题正确的是,《孙子算经》中有一道题等内容,欢迎下载使用。
说明:
1.本试题共6页,五道大题,23道小题.
2.本试题卷面满分:120分 考试时间:110分钟
3.请在答题卡上作答,在试卷上作答无效
一.选择题(本题共10小题,每小题只有一个正确选项,每小题3分,满分30分)
1.下列各点是直角坐标系中第三象限的点是:( )
A.B.C.D.
2.如图,直线与直线相交于点,.若,则的度数为( )
A.B.C.D.
3.若整数满足,那么整数等于:( )
A.2B.3C.4D.5
4.不等式的解集在数轴上表示正确的是:( )
A.B.C.D.
5.如图,一三角板夹在两条平行线之间,三角板两个顶点,分别在直线,上,,.若,则的度数是:( )
A.B.C.D.
6.下列调查方式,你认为最合适的是:( )
A.旅客上飞机前的安检,采用抽样调查方式
B.了解全国中学生的睡眠时间,采用抽样调查方式
C.了解某种玉米种子的发芽率,全面调查方式
D.调查春节晚会小品类节目的收视率,采用全面调查方式
7.若,则下列式子正确的是:( )
A.B.C.D.
8.计算的结果是( )
A.1B.0C.D.
9.下列命题正确的是:( )
①同位角相等,两直线平行;②相等的两个角是对顶角:③同旁内角互补;
④在同一平面内,过一点有且只有一条直线与已知直线垂直.
A.①③④B.①③C.①④D.②③
10.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺:将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长尺,绳子长尺,可列方程组为:( )
A.B.
C.D.
二.填空题(本题共有5小题,每小题3分,满分15分)
11.,则______.
12.对于实数,定义一种运算“☆”为:,若,则______.
13.如图,一条河流从地流往地.由于山的阻挡,河流到处后直线拐到处,再直线拐到处,最后拐到处,已知河流.如果,,则的度数为______度.
14.如图,是三个村庄的平面示意图,王屯、李店和徐沟的位置都在小正方形网格线的交点处,若王屯位置的坐标是,李店位置的坐标是,徐沟位置的坐标是______:
15.如图,平面直角坐标系中,一个点从原点出发,按向右一向上一向右一向下的顺序依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移到点,第二次移到点,第三次移到点,…,第次移到点,则点的坐标是______.
三、解答题(本题共4小题,16题10分,17、18、19每小题7分共计31分)
16.(1)解方程组:
(2)解不等式组:
17.如图,已知,平分交于点,,.
求的度数
18.已知的平方是4,的算术平方根是4,的立方根是8.
(1)求,,的值;
(2)求的值.
19.为了响应国家“脱贫致富”的号召,某煤炭销售公司租用了甲、乙两种类型的货车若干辆为贫困地区运输了880吨的煤炭,已知每辆甲类型货车运输煤炭40吨,每辆乙类型货车运输煤炭50吨,所有甲类型货车运输的煤炭比所有乙类型货车运输的煤炭多80吨.求煤炭销售公司租用甲乙两种类型货车各多少辆?
四、解答题(本题共2小题,每题10分,共20分)
20.已知点,分别满足下列条件,求出点的坐标:
(1)点在轴上;
(2)点在轴上;
(3)点的坐标,直线轴;
(4)点到两个坐标轴的距离相等.
21.某市教育局为落实“双减”政策,准备为初中生开设拓展课程.为让学生能够根据自己的兴趣爱好选择最喜欢的课程,进行问卷调查,问卷设计以下四种选项:
(综合模型),(摄影艺术),(音乐鉴赏),(劳动实践),随机抽出部分初中学生进行调查,每名学生必须且只能选择其中最喜欢的一种课程,并将调查结果整理绘制成如下不完整的统计图.
根据上述统计图中提供的信息,解答下列问题:
(1)此次被调查的学生人数为______名,______;
(2)补全条形统计图;
(3)求拓展课程(劳动实践)所对应的扇形圆心角的度数;
(4)根据抽样调查结果,请你估计该市14000名初中生中,有多少名学生最喜欢(音乐鉴赏)的拓展课程.
五、解答题(本题共2小题,每小题12分,合计24分)
22.如图,在直角坐标系中,已知,,其中,满足
(1)填空:______,______;
(2)如果将点向左移3个单位,再向下移8个单位得到点,连接,.在所给的直角坐标系中画出三角形,并求出三角形的面积;
(3)在(2)的条件下,在轴上有一点,使三角形的面积等于三角形的面积,请求的值.
备用图1备用图2
23.已知.
(I)如图1,求证::
(2)如图2,的平分线的反向延长线交的平分线于.若,,求的度数
(3)如图3,若平分,平分,的反向延长线和的反向延长线交于点,且,求的度数.
图1 图2图3
初一数学参考答案及评分标准
2024.7
一、选择题(共10小题,每小题3分,计30分)
1—5DABBC6—10BDACB
二、填空题(共5小题,每小题3分,计15分)
三、解答题(共4小题,16题10分,17、18、19每小题7分,计31分)
16(1)解:由①+②得:,,
由代入①得:,
所以方程组的解为:
(2)由①得:
由②得:
,
所以不等式组的解集是:
17.解:,
又是的平分线,
设,则
,.
18解:(1) 或
(2)
当时,原式,
当时原式
19.解:设租用甲种类型货车辆,设租用乙种类型货车辆.
则:
解得:,
答:租用甲种类型货车12辆,乙种类型货车8辆
四、解答题(共2小题,每小题10分,计20分)
20.解:(1)点在轴上,纵坐标为0
即 ,点
(2)点在轴上,横坐标为0
即,,,点
(3)轴时,,的纵坐标相等
即,,点.
(4)若点在第一或第三象限,点横纵坐标相等
即,,
点
若点在第二或第四象限,点横纵坐标互为相反数
即,,,
点.
21.(1)120,40
(2)图略
(3),
(4)(人)
答:大约有5600名学生最喜欢(音乐鉴赏)的拓展课程。
五、解答题(共2小题,每小题12分,计24分)
22.(1)4,
(2)图略
点,到轴距离为3,
所以是(平方个单位)
(3)当在轴正半轴上时,
如图,过点作轴垂线,过点作轴垂线,轴垂线,过点作轴垂线,分别交于点,,
是长方形,,,
,解得:
(或用梯形面积三角形面积三角形面积方法求,酌情赋分)
同理可得:当在轴负半轴上时,
,,
综上所述,当或时,
三角形的面积等于三角形面积。
23.(1)证明:如图,过作,
,
,
,,
,
即:;
(2),
,
平分,
,
由(1)得:,
平分,
,
过点作,如图:
,,
,,
.
(3)解:,分别平分,,
,
设,
由(1)知:,
即,
过作,
图3
,
,
则,,
,
,
.
题号
11
12
13
14
15
答案
1
5
140
相关试卷
这是一份2023-2024学年辽宁省大连市普兰店区数学九上期末复习检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,抛物线y=﹣等内容,欢迎下载使用。
这是一份辽宁省大连市普兰店区2023-2024学年九年级上学期期末数学试题(含答案),共24页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份辽宁省大连市普兰店区部分学校2022-2023学年七年级下学期期中数学试题(含答案解析),共19页。