年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    浙教版八年级数学下册基础知识专项讲练 专题6.9 反比例函数的应用(知识讲解)

    立即下载
    加入资料篮
    浙教版八年级数学下册基础知识专项讲练 专题6.9 反比例函数的应用(知识讲解)第1页
    浙教版八年级数学下册基础知识专项讲练 专题6.9 反比例函数的应用(知识讲解)第2页
    浙教版八年级数学下册基础知识专项讲练 专题6.9 反比例函数的应用(知识讲解)第3页
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙教版八年级数学下册基础知识专项讲练 专题6.9 反比例函数的应用(知识讲解)

    展开

    这是一份浙教版八年级数学下册基础知识专项讲练 专题6.9 反比例函数的应用(知识讲解),共14页。
    1. 能根据实际问题中的条件确定反比例函数的解析式,并能结合图象加深对问题的理解.
    2.根据条件求出函数解析式,运用学过的函数知识解决反比例函数的应用问题,体会数学与现实生活的紧密联系,增强应用意识.
    【要点梳理】
    要点一、利用反比例函数解决实际问题
    基本思路:建立函数模型,即在实际问题中求得函数解析式,然后应用函数的图象和性质等知识解决问题.
    一般步骤如下:
    (1)审清题意,根据常量、变量之间的关系,设出函数解析式,待定的系数用字母表示。
    (2)由题目中的已知条件,列出方程,求出待定系数.
    (3)写出函数解析式,并注意解析式中变量的取值范围.
    (4)利用函数解析式、函数的图象和性质等去解决问题.
    要点二、反比例函数在其他学科中的应用
    当圆柱体的体积一定时,圆柱的底面积是高的反比例函数;
    当工程总量一定时,做工时间是做工速度的反比例函数;
    在使用杠杆时,如果阻力和阻力臂不变,则动力是动力臂的反比例函数;
    【典型例题】
    类型一、反比例函数与实际问题
    1、教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降.水温y(℃)和通电时间x(min)成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20℃,接通电源后,水温y(℃)和通电时间x(min)之间的关系如图所示,回答下列问题:
    分别求出当0≤x≤8和8<x≤a时,y和x之间的函数关系式;
    求出图中a的值;
    李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40℃的开水,则他需要在什么时间段内接水?

    答案:(1)当0≤x≤8时,y=10x+20;当8<x≤a时,y=;(2)a=40;(3)李老师要在7:38到7:50之间接水
    分析:(1)直接利用反比例函数解析式和一次函数解析式求法得出答案;
    (2)利用(1)中所求解析式,当y=20时,得出答案;
    (3)当y=40时,代入反比例函数解析式,结合水温的变化得出答案.
    解:(1)当0≤x≤8时,设y=k1x+b,
    将(0,20),(8,100)的坐标分别代入y=k1x+b得,
    解得k1=10,b=20.
    ∴当0≤x≤8时,y=10x+20.
    当8<x≤a时,设y=,
    将(8,100)的坐标代入y=,
    得k2=800
    ∴当8<x≤a时,y=.
    综上,当0≤x≤8时,y=10x+20;当8<x≤a时,y=.
    (2)将y=20代入y=,
    解得x=40,
    即a=40;
    (3)当y=40时,x==20.
    ∴要想喝到不低于40℃的开水,x需满足8≤x≤20,
    即李老师要在7:38到7:50之间接水.
    【点拨】此题主要考查了反比例函数的应用,正确求出函数解析式是解题关键.
    举一反三:
    【变式1】 通过实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.学生注意力指标随时间(分钟)变化的函数图象如图所示,当和时,图象是线段;当时,图象是反比例函数的一部分.
    (1)求点对应的指标值;
    (2)张老师在一节课上讲解一道数学综合题需要17分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于36?请说明理由.

    答案:(1)20;(2)能,见解析
    分析:(1)先利用待定系数法求出反比例函数的解析式,再将x=45代入,即可得出A对应的指标值
    (2)先用待定系数法写出一次函数的解析式,再根据注意力指标都不低于36得出,得出自变量的取值范围,即可得出结论
    解:(1)令反比例函数为,由图可知点在的图象上,
    ∴,
    ∴.将x=45代入
    将x=45代入得:
    点对应的指标值为.
    (2)设直线的解析式为,将、代入中,
    得,解得.
    ∴直线的解析式为.
    由题得,解得.
    ∵,
    ∴张老师经过适当的安排,能使学生在听综合题的讲解时,注意力指标都不低于36.
    【点拨】本题考查一次函数的解析式、反比例函数的解析式、不等式组的解集、利用函数图像解决实际问题是中考的常考题型。
    【变式2】为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:
    药物燃烧时,y关于x的函数关系式为 ,自变量x的取值范围为 ;药物燃烧后,y关于x的函数关系式为 .
    研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过 分钟后,员工才能回到办公室;
    研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?

    答案:(1)yx,0≤x≤8;y(x>8);(2)30;(3)有效,理由见解析
    分析:(1)药物燃烧时,设出y与x之间的解析式y=k1x,把点(8,6)代入即可,从图上读出x的取值范围;药物燃烧后,设出y与x之间的解析式y,把点(8,6)代入即可;
    (2)把y=1.6代入反比例函数解析式,求出相应的x;
    (3)把y=3代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与10进行比较,大于等于10就有效.
    (1)解:(1)设药物燃烧时y关于x的函数关系式为y=k1x(k1>0)代入(8,6)为6=8k1,
    ∴k1设药物燃烧后y关于x的函数关系式为y(k2>0)代入(8,6)为6,
    ∴k2=48,
    ∴药物燃烧时y关于x的函数关系式为yx(0≤x≤8)药物燃烧后y关于x的函数关系式为y(x>8);
    (2)结合实际,令y中y≤1.6得x≥30,
    即从消毒开始,至少需要30分钟后学生才能进入教室.
    (3)把y=3代入yx,得:x=4,
    把y=3代入y,得:x=16,
    ∵16﹣4=12,
    所以这次消毒是有效的.
    【点拨】本题考查了一次函数和反比例函数的综合应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
    类型二、利用反比例函数解决学科上的问题
    2、已知某蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.
    求这个反比例函数的解析式;
    如果以此蓄电池为电源的用电器的限制电流不能超过3A,那么用电器可变电阻应控制在什么范围?

    答案:(1)函数的解析式为I=;(2)用电器可变电阻应控制在12Ω以上的范围内.
    分析:(1)先由电流I是电阻R的反比例函数,可设I=,将点(20,1.8),利用待定系数法即可求出这个反比例函数的解析式;
    (2)将I≤3代入(1)中所求的函数解析式即可确定电阻的取值范围.
    (1)解:(1)电流I是电阻R的反比例函数,设I=,
    ∵图象经过(20,1.8),
    ∴1.8=,
    解得k=1.8×20=36,
    ∴I=;
    (2)解:∵I≤3,I=,
    ∴≤3,
    ∴R≥12,
    即用电器可变电阻应控制在12Ω以上的范围内.
    【点拨】本题考查了反比例函数的应用,解题的关键是正确地从中整理出函数模型,并利用函数的知识解决实际问题.
    举一反三:
    【变式1】 如图,根据小孔成像的科学原理,当像距(小孔到像的距离)和物高(蜡烛火焰高度)不变时,火焰的像高(单位:)是物距(小孔到蜡烛的距离)(单位:)的反比例函数,当时,.
    (1)求关于的函数解析式;
    (2)若火焰的像高为,求小孔到蜡烛的距离.
    答案:(1);(2)
    分析:(1)运用待定系数法求解即可;
    (2)把代入反比例函数解析式,求出y的值即可.
    解:(1)由题意设,
    把,代入,得.
    ∴关于的函数解析式为.
    (2)把代入,得.
    ∴小孔到蜡烛的距离为.
    【点拨】本题主要考查了运用待定系数法求函数关系式以及求函数值,能正确掌握待定系数法是解答本题的关键.
    【变式2】为检测某品牌一次性注射器的质量,将注射器里充满一定量的气体,当温度不变时,注射器里的气体的压强是气体体积的反比例函数,其图象如图所示.
    求这个函数的表达式;
    当气体体积为时,求气体压强的值;
    若注射器内气体的压强不能超过,则其体积V要控制在什么范围?

    答案:(1);(2)气体压强为;(3)体积V应不少于
    分析:(1)利用待定系数法进行求解即可;
    (2)把代入反比例函数解析式求解即可;
    (3)把代入反比例函数解析式求解即可.
    (1)解:设,
    由图可得,反比例函数图象过,

    解得,
    ∴反比例函数的解析式为;
    (2)当时,

    ∴气体压强为;
    (3)当时,

    解得,
    ∴体积V应不少于.
    【点拨】本题考查了反比例函数的应用,熟练掌握知识点是解题的关键.
    【变式3】电子体重科读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R1, R1与踏板上人的质量m之间的函数关系式为R1=km+b(其中k,b为常数,0≤m≤120),其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻R0的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为U0 ,该读数可以换算为人的质量m,
    ①导体两端的电压U,导体的电阻R,通过导体的电流I,满足关系式I=;
    ②串联电路中电流处处相等,各电阻两端的电压之和等于总电压.
    (1)求k,b的值;
    (2)求R1关于U0的函数解析式;
    (3)用含U0的代数式表示m;
    (4)若电压表量程为0~6伏,为保护电压表,请确定该电子体重秤可称的最大质量.
    答案:(1);(2);I(3);(4)该电子体重秤可称的最大质量为115千克.
    分析:(1)根据待定系数法,即可求解;
    (2)根据“串联电路中电流处处相等,各电阻两端的电压之和等于总电压”,列出等式,进而即可求解;
    (3)由R1=m+240,,即可得到答案;
    (4)把时,代入,进而即可得到答案.
    解:(1)把(0,240),(120,0)代入R1=km+b,得,解得:;
    (2)∵,
    ∴;
    (3)由(1)可知:,
    ∴R1=m+240,
    又∵,
    ∴=m+240,即:;
    (4)∵电压表量程为0~6伏,
    ∴当时,
    答:该电子体重秤可称的最大质量为115千克.
    【点拨】本题主要考查一次函数与反比例函数的实际应用,熟练掌握待定系数法,是解题的关键.
    类型三、反比例函数解决实际问题的综合应用
    3、 某综合实践活动小组设计了一个简易电子体重秤,已知装有踏板(踏板质量忽略不计)的可变电阻与踏板上人的质量之间满足一次函数关系,共图象如图1所示;图2的电路中,电源电压恒为3伏,定值电阻的阻值为40欧,接通开关,人站上踏板,电压表显示的读数为,然后把代入相应的关系式,该读数就可以换算为人的质量,
    知识小链接:①导体两端的电压,导体的电阻,通过导体的电流,满足关系式;②串联电路中电流处处相等,各电阻两端的电压之和等于总电压.
    求可变电阻与人的质量之间的函数关系;
    用含的代数式表示;
    当电压表显示的读数为0.75伏时,求人的质量.

    答案:(1);(2);(3)70
    分析:(1)设可变电阻与人的质量之间的函数关系为,直接用待定系数法求解即可;
    (2)由题意可得,,再结合(1)的解析式,求解即可;
    (3)将代入,计算即可.
    (1)解:设可变电阻与人的质量之间的函数关系为,
    把(0,260),(130,0)代入得,

    解得,
    可变电阻与人的质量之间的函数关系为;
    (2)由题意得,可变电阻两端的电压之和=电源电压-电表电压,
    即可变电阻两端的电压之和,
    ,串联电路中电流处处相等,

    定值电阻的阻值为40欧,,

    整理得 ;
    (3)当时,
    .
    【点拨】本题以物理中的电路问题为背景,考查了待定系数法求一次函数解析式、反比例函数解析式即代入求值,准确理解题意并熟练掌握知识点是解题的关键.
    举一反三:
    【变式1】 为了预防新冠病毒的传播,某校对教室采取喷洒药物消毒,在对某教室进行消毒的过程中,先经过5分钟的集中药物喷洒,再封闭教室10分钟,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(分钟)之间的函数关系,在打开门窗通风前分别满足两一次函数,在通风后又成反比例,如图所示.
    (1)问:室内空气中的含药量不低于8mg/m3的持续时间可达到几分钟?
    (2)当室内空气中的含药量不低于5mg/m3且持续时间不低于30分钟时,才能完全有效杀灭传染病毒.试通过分析判断此次消毒是否完全有效?
    答案:(1)11分钟;(2)此次消毒不完全有效,分析见解析.
    分析:(1)由题意得,由可求得直线的解析式,将代入即可求出时间,从而得出答案;
    (2)利用求出反比例函数的解析式再分别计算出时的的值,进而可得答案.
    (1)解:由题意得:,,
    设直线的解析式为:,
    把代入得:,
    解得:,

    把代入得:,
    解得:,
    (分钟),
    答:室内空气中的含药量不低于的持续时间可达到11分钟.
    (2)解:设反比例函数的解析式为,
    把代入得:,
    解得:,

    把代入得:,
    解得:,
    把代入得:,
    解得:

    此次消毒是不完全有效.
    答:此次消毒不完全有效.
    【点拨】本题主要考查了正比例函数和反比例函数的应用,掌握正比例函数和反比例函数图象的形状,掌握两个函数的解析式的形式是解题的关键.
    【变式2】某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度()与时间()之间的函数关系,其中线段,表示恒温系统开启阶段,双曲线的一部分表示恒温系统关闭阶段.请根据图中信息解答下列问题:
    求与()的函数表达式;
    大棚里栽培的一种蔬菜在温度为到的条件下最适合生长,若某天恒温系统开启前的温度是,那么这种蔬菜一天内最适合生长的时间有多长?
    若大棚内的温度低于时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多长时间,才能使蔬菜避免受到伤害?
    答案:(1);(2)这种蔬菜一天内最适合生长的时间为;(3)恒温系统最多可以关闭,才能使蔬菜避免受到伤害
    分析:(1)当时,设双曲线的解析式为,把的坐标代入,得出,解出即可得出答案;
    (2)根据待定系数法求出线段解析式,再根据题意:大棚里栽培的一种蔬菜在温度为到的条件下最适合生长,结合图象,把代入线段的解析式,得出时间,再把代入(1)中双曲线,得出时间,两时间相减,即可得出答案;
    (3)先求解时,对应的双曲线函数图象上点的横坐标,再利用坐标含义可得答案.
    (1)解:当时,设双曲线的解析式为,
    ∵过双曲线,
    ∴把的坐标代入,
    可得:,
    解得:,
    ∴函数表达式为:;
    (2)解:设线段解析式为,
    ∵线段过点,,
    代入得,
    解得:,
    ∴解析式为:,
    ∵大棚里栽培的一种蔬菜在温度为到的条件下最适合生长,
    当时,代入,
    可得:,
    解得:,
    当,代入,
    可得:,
    解得:,
    经检验:是原方程的解,且符合题意,
    ∵(),
    ∴这种蔬菜一天内最适合生长的时间为;
    (3)解:当时,可得:,
    解得:,
    经检验:是原方程的解,且符合题意,
    ∴(),
    ∴恒温系统最多可以关闭,才能使蔬菜避免受到伤害.
    【点拨】本题考查了反比例函数的应用,利用待定系数法求解反比例函数的解析式和一次函数解析式,反比例函数的性质,理解反比例函数图象上的点的坐标含义是解本题的关键.

    相关试卷

    浙教版八年级数学下册基础知识专项讲练 专题6.11 反比例函数的应用(巩固篇)(含答案):

    这是一份浙教版八年级数学下册基础知识专项讲练 专题6.11 反比例函数的应用(巩固篇)(含答案),共22页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    浙教版八年级数学下册基础知识专项讲练 专题6.1 反比例函数(知识讲解):

    这是一份浙教版八年级数学下册基础知识专项讲练 专题6.1 反比例函数(知识讲解),共11页。

    浙教版八年级数学下册基础知识专项讲练 专题1.7 二次根式的加减(知识讲解):

    这是一份浙教版八年级数学下册基础知识专项讲练 专题1.7 二次根式的加减(知识讲解),共15页。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map