|课件下载
终身会员
搜索
    上传资料 赚现金
    2024河南中考数学备考重难专题课件:综合与实践 旋转问题【课件】
    立即下载
    加入资料篮
    2024河南中考数学备考重难专题课件:综合与实践  旋转问题【课件】01
    2024河南中考数学备考重难专题课件:综合与实践  旋转问题【课件】02
    2024河南中考数学备考重难专题课件:综合与实践  旋转问题【课件】03
    2024河南中考数学备考重难专题课件:综合与实践  旋转问题【课件】04
    2024河南中考数学备考重难专题课件:综合与实践  旋转问题【课件】05
    2024河南中考数学备考重难专题课件:综合与实践  旋转问题【课件】06
    2024河南中考数学备考重难专题课件:综合与实践  旋转问题【课件】07
    2024河南中考数学备考重难专题课件:综合与实践  旋转问题【课件】08
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024河南中考数学备考重难专题课件:综合与实践 旋转问题【课件】

    展开
    这是一份2024河南中考数学备考重难专题课件:综合与实践 旋转问题【课件】,共28页。PPT课件主要包含了课堂练兵,课后小练,典例精讲,考情分析等内容,欢迎下载使用。

    综合与实践 旋转问题
    例 (2023河南真题子母卷)如图,△ABC和△ADE都是等腰直角三角形,∠ACB=∠AED=90°,连接BD,点F为BD的中点,连接CF,EF.
    (1)如图①,当点E在CA的延长线上时,线段CF与EF的数量关系为________,∠CFE的度数为________;
    猜想:CF=EF,∠CFE=90°
    作直角三角形斜边上的中线
    同理证得△AFC≌△BFC
    【解法提示】如解图①,连接AF,∵△ABC和△ADE都是等腰直角三角形,∴∠DEA=∠BCA=90°,AE=DE,AC=BC,∴∠DAB=90°,∵点F为BD的中点,∴AF=DF=BF,∴△AEF≌△DEF(SSS),∴∠AEF=∠DEF,∵∠AED=90°,∴∠AEF=45°,同理可得∠ACF=45°,∴∠AEF=∠ACF=45°,∴EF=CF,∠CFE=90°.
    解:(1)EF=CF,90°;
    FH是梯形DECB中位线
    (2)将△ADE绕点A顺时针旋转,连接CE,(1)中的两个结论是否仍然成立?如果成立,请仅就图②的情况加以证明;如果不成立,请说明理由;
    点F为BD的中点,通过作辅助线构造等腰直角三角形
    过点B作BG∥DE交EF的延长线于点G,连接CG
    问题1 观察图形,能否证得△CEG为等腰直角三角形,从而证得EF=CF ,∠CFE=90°?
    问题2 怎么证明△CEG为等腰直角三角形?
    证明△BCG≌△ACE
    问题3 怎么证明△BCG≌△ACE?
    主要证明∠CBG=∠CAE
    (2)(1)中的两个结论仍成立.证明:∵△ABC和△ADE都是等腰直角三角形,∴∠ABC=∠BAC=∠ADE=∠DAE=45°,AE=DE,AC=BC,如解图②,过点B作BG∥DE交EF的延长线于点G,连接CG,∵BG∥DE,∴∠EDF=∠GBF,∵∠DFE=∠BFG,BF=DF,∴△BFG≌△DFE(ASA),∴BG=DE,FG=EF,∴BG=AE,∵∠EDF=∠GBF,∴∠CBG=∠GBF+∠CBD=∠EDF+∠CBD =∠ABD+∠ADB+∠ABC+∠ADE =180°-∠BAD+45°+45° =270°-∠BAD=∠EAC,
    在△BGC和△AEC中,
    ∴△BGC≌△AEC(SAS),∴GC=EC,∠BCG=∠ACE,∵∠ACB=∠BCG+∠ACG=90°,∴∠ACE+∠ACG=90°,∴△ECG是等腰直角三角形,又∵FG=EF,∴EF=CF,∠CFE=90°;
    (3)若AB=13,AE=5,将△ADE绕点A顺时针旋转过程中,当D,E,F共线时,请直接写出△BCE的面积.
    观察图形,AC不动,△ADE绕点A旋转,当D,E,F共线
    【解法提示】①如解图③,在△ABE中,∠AEB=90°,AB=13,AE=5,由勾股定理得BE= ,∴BD=BE-DE=12-5=7,∵点F是BD的中点,∴DF= ,∴CF=EF=5+ ,∴S△BCE= BE·CF= ×12× =51;②如解图④,同理可得S△BCE= BE·CF= ×12× =21.综上所述,△BCE的面积为51或21.
    练习 (2023河南逆袭卷)如图,在四边形ABCD中,点E是直线BC上一点,将射线AE绕点A逆时针旋转α交直线CD于点F.
    (1)如图①,若四边形ABCD为菱形,∠B=60°,α=60°,则AE与AF之间的数量关系是__________;
    观察图形无法在一个三角形中证明线段相等,考虑作辅助线构造全等三角形
    【解法提示】如解图①,连接AC,∵四边形ABCD是菱形,∴AB=BC=CD=AD,AB∥CD,∴∠ACD=∠BAC.∵∠B=60°,∴△ABC是等边三角形,∴AB=AC,∠ACD=∠BAC=60°.∵∠EAF=60°,∴∠BAE+∠EAC=∠EAC+∠CAF=60°,∴∠BAE=∠CAF,∴△ABE≌△ACF,∴AE=AF.
    解:(1)AE=AF;
    (2)如图②,若四边形ABCD为正方形,α=45°,连接EF,当点E在BC的延长线上时,试猜想线段BE、DF与EF之间的数量关系,并加以证明;
    无法直接判断数量关系,考虑通过旋转使三条线段在一个三角形中求证
    将△ADF绕点A逆时针旋转使得AD边与AB边重合
    △ABF′≌△ADF(SAS)
    ∠EAF′=∠EAF=45°
    (2)BE-DF=EF;证明:如解图②,在BC上取点F′,使得BF′=DF,连接AF′,∵四边形ABCD是正方形,∴AB=AD,∠ABF′=∠ADF=90°,在△ABF′和△ADF中,
    ∴△ABF′≌△ADF(SAS),∴AF′=AF,∠BAF′=∠DAF.∵∠EAF=45°,∠BAD=90°,∴∠DAE+∠DAF=∠DAE+∠BAF′=45°,∴∠EAF′=∠EAF=45°.
    在△AEF′和△AEF中,
    ∴△AEF′≌△AEF(SAS),∴EF′=EF,∴BE-DF=BE-BF′=EF′=EF;
    (3)若四边形ABCD为正方形,α=45°,连接EF,当AB=4,BE= BC时,请直接写出EF的长.
    类比(1)中E在BC上,(2)中E在BC延长线上,结合(3)中条件,也分两种情况
    ②BE在BC的反向延长线上
    练习 (2023河南预测卷)如图,△AOB和△COD是等腰直角三角形,OA=2OC=4 ,点O为直角顶点,连接AD、BC,E是BC的中点,连接OE.
    (1)如图①,当点C、D分别在边OA、OB上时,线段OE与线段AD之间的数量关系为______________;
    (2)将△COD绕点O逆时针旋转到如图②所示位置,请探究线段OE与线段AD之间的数量关系,并说明理由;
    (2)OE= AD理由如下:如解图①,延长OE至点F,使得EF=OE,连接BF、CF,∵BE=CE,EO=EF,∴四边形COBF是平行四边形,∴BF∥CO,BF=CO=DO,∴∠FBO+∠BOC=180°.∵∠BOA=∠COD=90°,∴∠BOC+∠BOD=∠1+∠BOD=90°,∴∠1=∠BOC.∵∠1+∠DOA=180°,∴∠FBO=∠DOA.∵BO=AO,∴△FBO≌△DOA(SAS),∴AD=OF,∴OE= AD;
    (3)在△COD的旋转过程中,当点C落在直线AD上时,请直接写出OE的长.
    【解法提示】分点C在AD上和点C在AD的延长线上两种情况讨论:①如解图②,当点C在线段AD上时,设AD、EO交于点M,由(2)可知EO= AD,易证AD⊥EO,∴∠AMO=90°,∵OC=OD= ,∴MO= ,∴在Rt△AMO中,AM= ,又∵MD=MO=2,∴AD=AM+MD = +2,∴OE= AD= +1;
    相关课件

    2024河北数学中考备考重难专题:圆的综合题真实情境中的圆问题(课件): 这是一份2024河北数学中考备考重难专题:圆的综合题真实情境中的圆问题(课件),共29页。PPT课件主要包含了课件说明,课堂练兵,课后小练,典例精讲,考情分析,方法总结等内容,欢迎下载使用。

    2024河北数学中考备考重难专题:圆的综合题动点问题题(课件): 这是一份2024河北数学中考备考重难专题:圆的综合题动点问题题(课件),共25页。PPT课件主要包含了课件说明,课堂练兵,课后小练,典例精讲,考情分析等内容,欢迎下载使用。

    2024河北数学中考备考重难专题:函数的实际应用题实物模型(课件): 这是一份2024河北数学中考备考重难专题:函数的实际应用题实物模型(课件),共26页。PPT课件主要包含了课件说明,函数的实际应用题,课堂练兵,课后小练,典例精讲,实物模型,考情分析等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map