2025届高考一轮复习三年真题汇编专题02常用逻辑用语
展开
这是一份2025届高考一轮复习三年真题汇编专题02常用逻辑用语,文件包含2025届高考一轮复习三年真题汇编专题02常用逻辑用语参考答案docx、2025届高考一轮复习三年真题汇编专题02常用逻辑用语docx等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。
【分析】对于两个命题而言,可分别取、,再结合命题及其否定的真假性相反即可得解.
【详解】对于而言,取,则有,故是假命题,是真命题,
对于而言,取,则有,故是真命题,是假命题,
综上,和都是真命题.
故选:B.
2.A
【分析】根据向量数量积分析可知等价于,结合充分、必要条件分析判断.
【详解】因为,可得,即,
可知等价于,
若或,可得,即,可知必要性成立;
若,即,无法得出或,
例如,满足,但且,可知充分性不成立;
综上所述,“”是“且”的必要不充分条件.
故选:A.
3.C
【分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件.
【详解】根据立方的性质和指数函数的性质,和都当且仅当,所以二者互为充要条件.
故选:C.
4.C
【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.
【详解】对A,当时,则,
所以,解得或,即必要性不成立,故A错误;
对C,当时,,故,
所以,即充分性成立,故C正确;
对B,当时,则,解得,即必要性不成立,故B错误;
对D,当时,不满足,所以不成立,即充分性不立,故D错误.
故选:C.
5.A
【分析】用充分条件、必要条件的定义判断.
【详解】由为整数能推出为整数,故“为整数”是“为整数”的充分条件,
由,为整数不能推出为整数,故“为整数”是“为整数”的不必要条件,
综上所述,“为整数”是“为整数”的充分不必要条件,
故选:A.
6.C
【分析】解法一:由化简得到即可判断;解法二:证明充分性可由得到,代入化简即可,证明必要性可由去分母,再用完全平方公式即可;解法三:证明充分性可由通分后用配凑法得到完全平方公式,再把代入即可,证明必要性可由通分后用配凑法得到完全平方公式,再把代入,解方程即可.
【详解】解法一:
因为,且,
所以,即,即,所以.
所以“”是“”的充要条件.
解法二:
充分性:因为,且,所以,
所以,
所以充分性成立;
必要性:因为,且,
所以,即,即,所以.
所以必要性成立.
所以“”是“”的充要条件.
解法三:
充分性:因为,且,
所以,
所以充分性成立;
必要性:因为,且,
所以,
所以,所以,所以,
所以必要性成立.
所以“”是“”的充要条件.
故选:C
7.B
【分析】根据充分条件、必要条件的概念及同角三角函数的基本关系得解.
【详解】当时,例如但,
即推不出;
当时,,
即能推出.
综上可知,甲是乙的必要不充分条件.
故选:B
8.B
【分析】根据充分、必要性定义判断条件的推出关系,即可得答案.
【详解】由,则,当时不成立,充分性不成立;
由,则,即,显然成立,必要性成立;
所以是的必要不充分条件.
故选:B
9.C
【分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n项和与第n项的关系推理判断作答.,
【详解】方法1,甲:为等差数列,设其首项为,公差为,
则,
因此为等差数列,则甲是乙的充分条件;
反之,乙:为等差数列,即为常数,设为,
即,则,有,
两式相减得:,即,对也成立,
因此为等差数列,则甲是乙的必要条件,
所以甲是乙的充要条件,C正确.
方法2,甲:为等差数列,设数列的首项,公差为,即,
则,因此为等差数列,即甲是乙的充分条件;
反之,乙:为等差数列,即,
即,,
当时,上两式相减得:,当时,上式成立,
于是,又为常数,
因此为等差数列,则甲是乙的必要条件,
所以甲是乙的充要条件.
故选:C
10.A
【分析】由三角函数的性质结合充分条件、必要条件的定义即可得解.
【详解】因为可得:
当时,,充分性成立;
当时,,必要性不成立;
所以当,是的充分不必要条件.
故选:A.
11.C
【分析】设等差数列的公差为,则,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.
【详解】设等差数列的公差为,则,记为不超过的最大整数.
若为单调递增数列,则,
若,则当时,;若,则,
由可得,取,则当时,,
所以,“是递增数列”“存在正整数,当时,”;
若存在正整数,当时,,取且,,
假设,令可得,且,
当时,,与题设矛盾,假设不成立,则,即数列是递增数列.
所以,“是递增数列”“存在正整数,当时,”.
所以,“是递增数列”是“存在正整数,当时,”的充分必要条件.
故选:C.
相关试卷
这是一份十年高考真题分类汇编(2010-2019) 数学 专题02 常用逻辑用语(含解析),共12页。试卷主要包含了记不等式组表示的平面区域为D等内容,欢迎下载使用。
这是一份2021年高考数学真题和模拟题分类汇编专题02常用逻辑用语含解析,共7页。试卷主要包含了选择题部分,填空题部分等内容,欢迎下载使用。
这是一份近五年(2017-2021)高考数学真题分类汇编02 常用逻辑用语,共14页。试卷主要包含了常用逻辑用语,单选题等内容,欢迎下载使用。