[数学]浙江省北斗联盟2023-2024数学年高二下学期期中联考数学试题
展开考试时间:分钟 满分:分
姓名:____________ 班级:____________ 学号:____________
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、单选题(每小题5分共40分)(共8题;共40分)
1. 集合 , , 则( )
2. 已知空间两条不同直线m、n , 两个不同平面、 , 下列命题正确的是( )
① , 则 ② , , 则
③ , 则 ④ , 则
3. 已知非零向量 , , 则“两向量 , 数量积大于0”是“两向量 , 夹角是锐角”的( )条件
4. 东阳市一米阳光公益组织主要进行“敬老”和“助学”两项公益项目,某周六,组织了七名大学生开展了“筑梦前行,阳光助学”活动后,大家合影留念,其中米一同学想与佳艳、刘西排一起,且要排在她们中间,则全部排法有( )种。
5. 已知等差数列 , 前n项和为 , 、是方程两根,则( )
6. 空间点 , , 则点A到直线BC的距离( )
7. 已知 , , 则( )
8. 三棱锥中, , , 则三棱锥的外接球的表面积为( )
二、多选题(每小题6分,共18分,多选.错选0分少选则根据比例得分)(共3题;共18分)
9. 已知直线:和直线: , 则下列说法正确的是( )
10. 已知正项等比数列的公比为 , 前n项积为 , 且满足 , , 则下列说法正确的是( )
11. 已知定义域为R的函数不恒为零,满足等式 , 则下列说法正确的是( )
三、填空题(每小题5分共15分)(共3题;共15分)
12. 复数 , 则的虚部为____________________.
13. 一学校对高二女生身高情况进行采样调查,抽取了10个同学的身高:161,160,152,155,170,157,178,175,172,162,则估计这些女生的上四分位数是____________________
14. 三角形ABC , , , , D为AB边上一点, , , , 则的最小值为____________________
第Ⅱ卷 主观题
第Ⅱ卷的注释
四、解答题(共77分)(共5题;共77分)
15. 函数 , , 求的最大值和最小值
16. 如图多面体ABCDEF , 底面ABCD为菱形, , , , , 平面平面ABCD
(1) 求证
(2) 求平面BDE与平面ADF所成锐角的余弦值
17.
(1) 求圆O:和圆M:的公切线
(2) 若与抛物线相交,求弦长
18. 在高等数学中对于二阶线性递推式求数列通项,有一个特殊的方法特征根法:我们把递推数列的特征方程写为①,
若①有两个不同实数根 , , 则可令;
若①有两个相同的实根 , 则可令 ,
再根据 , 求出 , , 代入即可求出数列的通项。
(1) 斐波那契数列(Fibnacci sequence),又称黄金分割数列,因出自于意大利数学家斐波那契的一道兔子繁殖问题而得名。斐波那契数列指的是形如的数列,这个数列的前两项为1,从第三项开始,每一项都等于前两项之和,请你写出斐波那契数列的通项公式;
(2) 已知数列中 , , , 数列满足 , 数列满足 , 求数列的前n项和。
19. 已知点为焦点在x轴上的等轴双曲线上的一点.
(1) 求双曲线的方程;
(2) 已知直线且l交双曲线右支于M , N两点,直线PM , PN分别交该双曲线斜率为正的渐近线于E , F两点,设四边形EFNM和三角形PEF的面积分别为和 , 求的取值范围. 题号
一
二
三
四
评分
阅卷人
得分
A .
B .
C .
D .
A . ①③
B . ②④
C . ①③④
D . ①④
A . 必要
B . 充分
C . 充要
D . 即不充分也不必要
A . 120
B . 240
C . 480
D . 720
A . 2020
B . 2022
C . 2023
D . 2024
A .
B .
C .
D .
A .
B .
C .
D .
A .
B .
C .
D .
阅卷人
得分
A . 若 , 则表示与x轴平行或重合的直线
B . 直线可以表示任意一条直线
C . 若 , 则
D . 若 , 则
A .
B .
C .
D . 存在最大值
A .
B . 在定义域上单调递增
C . 是偶函数
D . 函数有两个极值点
阅卷人
得分
阅卷人
得分
浙江省北斗联盟2023-2024学年高一下学期4月期中联考数学试题: 这是一份浙江省北斗联盟2023-2024学年高一下学期4月期中联考数学试题,文件包含数学试卷pdf、数学答案pdf等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。
浙江省杭州市北斗联盟2023-2024学年高二上学期期中联考数学试题(Word版附解析): 这是一份浙江省杭州市北斗联盟2023-2024学年高二上学期期中联考数学试题(Word版附解析),共25页。试卷主要包含了考试结束后,只需上交答题纸等内容,欢迎下载使用。
浙江省北斗联盟2023-2024学年高二上学期期中联考数学试题(PDF版附解析): 这是一份浙江省北斗联盟2023-2024学年高二上学期期中联考数学试题(PDF版附解析),共26页。