|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年高考数学真题分类汇编04:数列
    立即下载
    加入资料篮
    2024年高考数学真题分类汇编04:数列01
    2024年高考数学真题分类汇编04:数列02
    2024年高考数学真题分类汇编04:数列03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年高考数学真题分类汇编04:数列

    展开
    这是一份2024年高考数学真题分类汇编04:数列,共21页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    1.(2024·全国)等差数列的前项和为,若,( )
    A.B.C.1D.
    2.(2024·全国)等差数列的前项和为,若,,则( )
    A.B.C.1D.2
    二、填空题
    3.(2024·全国)记为等差数列的前n项和,若,,则 .
    4.(2024·北京)已知,,不为常数列且各项均不相同,下列正确的是 .
    ①,均为等差数列,则M中最多一个元素;
    ②,均为等比数列,则M中最多三个元素;
    ③为等差数列,为等比数列,则M中最多三个元素;
    ④单调递增,单调递减,则M中最多一个元素.
    5.(2024·上海)无穷等比数列满足首项,记,若对任意正整数集合是闭区间,则的取值范围是 .
    三、解答题
    6.(2024·全国)设m为正整数,数列是公差不为0的等差数列,若从中删去两项和后剩余的项可被平均分为组,且每组的4个数都能构成等差数列,则称数列是可分数列.
    (1)写出所有的,,使数列是可分数列;
    (2)当时,证明:数列是可分数列;
    (3)从中一次任取两个数和,记数列是可分数列的概率为,证明:.
    7.(2024·全国)已知双曲线,点在上,为常数,.按照如下方式依次构造点,过作斜率为的直线与的左支交于点,令为关于轴的对称点,记的坐标为.
    (1)若,求;
    (2)证明:数列是公比为的等比数列;
    (3)设为的面积,证明:对任意的正整数,.
    8.(2024·全国)已知等比数列的前项和为,且.
    (1)求的通项公式;
    (2)求数列的通项公式.
    9.(2024·全国)记为数列的前项和,且.
    (1)求的通项公式;
    (2)设,求数列的前项和为.
    10.(2024·北京)设集合.对于给定有穷数列,及序列,,定义变换:将数列的第项加1,得到数列;将数列的第列加,得到数列…;重复上述操作,得到数列,记为.
    (1)给定数列和序列,写出;
    (2)是否存在序列,使得为,若存在,写出一个符合条件的;若不存在,请说明理由;
    (3)若数列的各项均为正整数,且为偶数,证明:“存在序列,使得为常数列”的充要条件为“”.
    11.(2024·天津)已知数列是公比大于0的等比数列.其前项和为.若.
    (1)求数列前项和;
    (2)设,,其中是大于1的正整数.
    (ⅰ)当时,求证:;
    (ⅱ)求.
    参考答案:
    1.D
    【分析】可以根据等差数列的基本量,即将题目条件全转化成和来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.
    【解析】方法一:利用等差数列的基本量
    由,根据等差数列的求和公式,,
    又.
    故选:D
    方法二:利用等差数列的性质
    根据等差数列的性质,,由,根据等差数列的求和公式,
    ,故.
    故选:D
    方法三:特殊值法
    不妨取等差数列公差,则,则.
    故选:D
    2.B
    【分析】由结合等差中项的性质可得,即可计算出公差,即可得的值.
    【解析】由,则,
    则等差数列的公差,故.
    故选:B.
    3.95
    【分析】利用等差数列通项公式得到方程组,解出,再利用等差数列的求和公式节即可得到答案.
    【解析】因为数列为等差数列,则由题意得,解得,
    则.
    故答案为:.
    4.①③④
    【分析】利用两类数列的散点图的特征可判断①④的正误,利用反例可判断②的正误,结合通项公式的特征及反证法可判断③的正误.
    【解析】对于①,因为均为等差数列,故它们的散点图分布在直线上,
    而两条直线至多有一个公共点,故中至多一个元素,故①正确.
    对于②,取则均为等比数列,
    但当为偶数时,有,此时中有无穷多个元素,
    故②错误.
    对于③,设,,
    若中至少四个元素,则关于的方程至少有4个不同的正数解,
    若,则由和的散点图可得关于的方程至多有两个不同的解,矛盾;
    若,考虑关于的方程奇数解的个数和偶数解的个数,
    当有偶数解,此方程即为,
    方程至多有两个偶数解,且有两个偶数解时,
    否则,因单调性相反,
    方程至多一个偶数解,
    当有奇数解,此方程即为,
    方程至多有两个奇数解,且有两个奇数解时即
    否则,因单调性相反,
    方程至多一个奇数解,
    因为,不可能同时成立,
    故不可能有4个不同的正数解,故③正确.
    对于④,因为为单调递增,为递减数列,前者散点图呈上升趋势,
    后者的散点图呈下降趋势,两者至多一个交点,故④正确.
    故答案为:①③④
    【点睛】思路点睛:对于等差数列和等比数列的性质的讨论,可以利用两者散点图的特征来分析,注意讨论两者性质关系时,等比数列的公比可能为负,此时要注意合理转化.
    5.
    【分析】当时,不妨设,则,结合为闭区间可得对任意的恒成立,故可求的取值范围.
    【解析】由题设有,因为,故,故,
    当时,,故,此时为闭区间,
    当时,不妨设,若,则,
    若,则,
    若,则,
    综上,,
    又为闭区间等价于为闭区间,
    而,故对任意恒成立,
    故即,故,
    故对任意的恒成立,因,
    故当时,,故即.
    故答案为:.
    【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.
    6.(1)
    (2)证明见解析
    (3)证明见解析
    【分析】(1)直接根据可分数列的定义即可;
    (2)根据可分数列的定义即可验证结论;
    (3)证明使得原数列是可分数列的至少有个,再使用概率的定义.
    【解析】(1)首先,我们设数列的公差为,则.
    由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,
    故我们可以对该数列进行适当的变形,
    得到新数列,然后对进行相应的讨论即可.
    换言之,我们可以不妨设,此后的讨论均建立在该假设下进行.
    回到原题,第1小问相当于从中取出两个数和,使得剩下四个数是等差数列.
    那么剩下四个数只可能是,或,或.
    所以所有可能的就是.
    (2)由于从数列中取出和后,剩余的个数可以分为以下两个部分,共组,使得每组成等差数列:
    ①,共组;
    ②,共组.
    (如果,则忽略②)
    故数列是可分数列.
    (3)定义集合,.
    下面证明,对,如果下面两个命题同时成立,
    则数列一定是可分数列:
    命题1:或;
    命题2:.
    我们分两种情况证明这个结论.
    第一种情况:如果,且.
    此时设,,.
    则由可知,即,故.
    此时,由于从数列中取出和后,
    剩余的个数可以分为以下三个部分,共组,使得每组成等差数列:
    ①,共组;
    ②,共组;
    ③,共组.
    (如果某一部分的组数为,则忽略之)
    故此时数列是可分数列.
    第二种情况:如果,且.
    此时设,,.
    则由可知,即,故.
    由于,故,从而,这就意味着.
    此时,由于从数列中取出和后,剩余的个数可以分为以下四个部分,共组,使得每组成等差数列:
    ①,共组;
    ②,,共组;
    ③全体,其中,共组;
    ④,共组.
    (如果某一部分的组数为,则忽略之)
    这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含个行,个列的数表以后,个列分别是下面这些数:
    ,,,.
    可以看出每列都是连续的若干个整数,它们再取并以后,将取遍中除开五个集合,,,,中的十个元素以外的所有数.
    而这十个数中,除开已经去掉的和以外,剩余的八个数恰好就是②中出现的八个数.
    这就说明我们给出的分组方式满足要求,故此时数列是可分数列.
    至此,我们证明了:对,如果前述命题1和命题2同时成立,则数列一定是可分数列.
    然后我们来考虑这样的的个数.
    首先,由于,和各有个元素,故满足命题1的总共有个;
    而如果,假设,则可设,,代入得.
    但这导致,矛盾,所以.
    设,,,则,即.
    所以可能的恰好就是,对应的分别是,总共个.
    所以这个满足命题1的中,不满足命题2的恰好有个.
    这就得到同时满足命题1和命题2的的个数为.
    当我们从中一次任取两个数和时,总的选取方式的个数等于.
    而根据之前的结论,使得数列是可分数列的至少有个.
    所以数列是可分数列的概率一定满足
    .
    这就证明了结论.
    【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.
    7.(1),
    (2)证明见解析
    (3)证明见解析
    【分析】(1)直接根据题目中的构造方式计算出的坐标即可;
    (2)根据等比数列的定义即可验证结论;
    (3)思路一:使用平面向量数量积和等比数列工具,证明的取值为与无关的定值即可.思路二:使用等差数列工具,证明的取值为与无关的定值即可.
    【解析】(1)
    由已知有,故的方程为.
    当时,过且斜率为的直线为,与联立得到.
    解得或,所以该直线与的不同于的交点为,该点显然在的左支上.
    故,从而,.
    (2)由于过且斜率为的直线为,与联立,得到方程.
    展开即得,由于已经是直线和的公共点,故方程必有一根.
    从而根据韦达定理,另一根,相应的.
    所以该直线与的不同于的交点为,而注意到的横坐标亦可通过韦达定理表示为,故一定在的左支上.
    所以.
    这就得到,.
    所以
    .
    再由,就知道,所以数列是公比为的等比数列.
    (3)方法一:先证明一个结论:对平面上三个点,若,,则.(若在同一条直线上,约定)
    证明:
    .
    证毕,回到原题.
    由于上一小问已经得到,,
    故.
    再由,就知道,所以数列是公比为的等比数列.
    所以对任意的正整数,都有
    .
    而又有,,
    故利用前面已经证明的结论即得
    .
    这就表明的取值是与无关的定值,所以.
    方法二:由于上一小问已经得到,,
    故.
    再由,就知道,所以数列是公比为的等比数列.
    所以对任意的正整数,都有
    .
    这就得到,
    以及.
    两式相减,即得.
    移项得到.
    故.
    而,.
    所以和平行,这就得到,即.
    【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.
    8.(1)
    (2)
    【分析】(1)利用退位法可求公比,再求出首项后可求通项;
    (2)利用等比数列的求和公式可求.
    【解析】(1)因为,故,
    所以即故等比数列的公比为,
    故,故,故.
    (2)由等比数列求和公式得.
    9.(1)
    (2)
    【分析】(1)利用退位法可求的通项公式.
    (2)利用错位相减法可求.
    【解析】(1)当时,,解得.
    当时,,所以即,
    而,故,故,
    ∴数列是以4为首项,为公比的等比数列,
    所以.
    (2),
    所以

    所以

    .
    10.(1)
    (2)不存在符合条件的,理由见解析
    (3)证明见解析
    【分析】(1)直接按照的定义写出即可;
    (2)利用反证法,假设存在符合条件的,由此列出方程组,进一步说明方程组无解即可;
    (3)分充分性和必要性两方面论证.
    【解析】(1)由题意得;
    (2)假设存在符合条件的,可知的第项之和为,第项之和为,
    则,而该方程组无解,故假设不成立,
    故不存在符合条件的;
    (3)我们设序列为,特别规定.
    必要性:
    若存在序列,使得为常数列.
    则,所以.
    根据的定义,显然有,这里,.
    所以不断使用该式就得到,,必要性得证.
    充分性:
    若.
    由已知,为偶数,而,所以也是偶数.
    我们设是通过合法的序列的变换能得到的所有可能的数列中,使得最小的一个.
    上面已经证明,这里,.
    从而由可得.
    同时,由于总是偶数,所以和的奇偶性保持不变,从而和都是偶数.
    下面证明不存在使得.
    假设存在,根据对称性,不妨设,,即.
    情况1:若,则由和都是偶数,知.
    对该数列连续作四次变换后,新的相比原来的减少,这与的最小性矛盾;
    情况2:若,不妨设.
    情况2-1:如果,则对该数列连续作两次变换后,新的相比原来的至少减少,这与的最小性矛盾;
    情况2-2:如果,则对该数列连续作两次变换后,新的相比原来的至少减少,这与的最小性矛盾.
    这就说明无论如何都会导致矛盾,所以对任意的都有.
    假设存在使得,则是奇数,所以都是奇数,设为.
    则此时对任意,由可知必有.
    而和都是偶数,故集合中的四个元素之和为偶数,对该数列进行一次变换,则该数列成为常数列,新的等于零,比原来的更小,这与的最小性矛盾.
    综上,只可能,而,故是常数列,充分性得证.
    【点睛】关键点点睛:本题第三问的关键在于对新定义的理解,以及对其本质的分析.
    11.(1)
    (2)①证明见详解;②
    【分析】(1)设等比数列的公比为,根据题意结合等比数列通项公式求,再结合等比数列求和公式分析求解;
    (2)①根据题意分析可知,,利用作差法分析证明;②根据题意结合等差数列求和公式可得,再结合裂项相消法分析求解.
    【解析】(1)设等比数列的公比为,
    因为,即,
    可得,整理得,解得或(舍去),
    所以.
    (2)(i)由(1)可知,且,
    当时,则,即
    可知,

    可得,
    当且仅当时,等号成立,
    所以;
    (ii)由(1)可知:,
    若,则;
    若,则,
    当时,,可知为等差数列,
    可得,
    所以,
    且,符合上式,综上所述:.
    【点睛】关键点点睛:1.分析可知当时,,可知为等差数列;
    2.根据等差数列求和分析可得.
    相关试卷

    2024年高考数学真题分类汇编04:数列: 这是一份2024年高考数学真题分类汇编04:数列,共19页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2022高考数学真题分类汇编06 数列(学生与教师版): 这是一份2022高考数学真题分类汇编06 数列(学生与教师版),文件包含2022高考数学真题分类汇编06数列教师版docx、2022高考数学真题分类汇编06数列学生版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。

    2022高考数学真题分类汇编04平面向量: 这是一份2022高考数学真题分类汇编04平面向量,共3页。试卷主要包含了平面向量,选择题,填空题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map